Difference between revisions of "Homework"

From Class Wiki
Jump to: navigation, search
 
(Homework #9)
Line 3: Line 3:
 
<br>
 
<br>
 
Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>)
 
Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>)
  +
<br>
 
<math>
 
<math>
\sum_{k=-\infty}^{\infty}
+
\sum_{k=-\infty}^{\infty} \left | x(kT) \right | ^2
  +
=c\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt
 
</math>
 
</math>
  +
<br>
  +
And find c.

Revision as of 17:12, 9 December 2004

Homework #9

Problem Statement:
Show that, for a bandwidth limited signal ( x(t) with  f_{max} < {1\over {2T}} )

\sum_{k=-\infty}^{\infty} \left | x(kT) \right | ^2
=c\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt
And find c.