Signals and systems/GF Fourier: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 20: Line 20:
*Multiply by the complex conjugate
*Multiply by the complex conjugate


<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = \sum_{n=-\infty}^\infty \alpha_n T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = \sum_{n=-\infty}^\infty \alpha_n T \frac{\sin\pi(n-m)}{\pi(n-m)} = \sum_{n=-\infty}^\infty \alpha_n \begin{Bmatrix} T, n=m \\ 0, n\ne m \end{Bmatrix} = \sum_{n=-\infty}^\infty \alpha_n T\delta_{n,m}</math>
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = \sum_{n=-\infty}^\infty \alpha_n T\delta_{n,m}</math>


*<math> \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = T \frac{\sin\pi(n-m)}{\pi(n-m)} = \begin{Bmatrix} T, n=m \\ 0, n\ne m \end{Bmatrix} = \sum_{n=-\infty}^\infty \alpha_n T\delta_{n,m}</math>
*Using L'Hopitals to evaluate the <math>\frac{T\cdot 0}{0}</math> case. Note that n & m are integers

** Using L'Hopitals to evaluate the <math>\frac{T\cdot 0}{0}</math> case. Note that n & m are integers


== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation ==
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation ==

Revision as of 22:20, 29 October 2006

Fourier series

The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.

A function is considered periodic if for .

The exponential form of the Fourier series is defined as

Determining the coefficient

  • The definition of the Fourier series

  • Integrating both sides for one period. The range of integration is arbitrary, but using scales nicely when extending the Fourier series to a non-periodic function

  • Multiply by the complex conjugate

    • Using L'Hopitals to evaluate the case. Note that n & m are integers

Notation

Linear Time Invariant Systems

Changing Basis Functions

Identities