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Abstract

The two-wheeled self-balancing human transporters (TW-SBHT) are
being widely used in transportation nowadays owing to their advan-
tages such as energy saving, environmental protection, simple struc-
ture, and flexible operation. The modelling and control of TW-SBHT
have emerged as one of the trending research areas in the field of
control system design of mobile robots. Being a complex and nonlin-
ear system, the control problem of TW-SBHT is a challenging task
and needs to be effectively tackled to achieve the control objectives
of maintaining uniform speed and dynamic stability. Though linear
control strategies for TW-SBHT have been already proposed in the
literature, they cannot offer an effective control for large external
disturbances. Therefore, in this work, a non-linear control i.e. State-
Dependent Riccati Equation (SDRE) has been implemented for effec-
tive control of TW-SBHT and its performance is compared with the
linear controls including Proportional-Integral-Derivative (PID) and
Linear-Quadratic Regulator (LQR) techniques. Initially, the more
accurate model of TW-SBHT has been derived by applying the suit-
able modifications in existing models. Then, the application of SDRE
for control of TW-SBHT has been presented and its performance is
compared with linear control strategies.

©2014 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

Over the past few years, the studies on mobile wheeled inverted pendulum models have attracted the
curiosity of researchers across the world because of their high navigation capabilities. The two-wheeled
self-balancing human transporter (TW-SBHT), like Segway, is a mobile robot with a highly unstable
system. Its platform is required to be controlled to maintain the appropriate balance of the vehicle

†Corresponding author
Email address: saransh.j1997@gmail.com, mohit.makkar@lnmiit.ac.in, sarthakjain098@gmail.com and deepu-
nune@gmail.com
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and the driver. TW-SBHT contains a driving lever, one horizontal platform, and wheels which are
driven by electric motors. The driver stands on the horizontal platform. TW-SBHT can move forward,
backward and turn in either left or right direction. Unlike the scooter, whose wheels are connected in
series and are interdependent, the TW-SBHT has wheels in a parallel configuration. The lever gives
support to the driver and helps in steering the vehicle. TW-SBHT is controlled by the driver′s motion.
When the driver leans his/her body in the forward direction, it moves forward. Similarly, when the
driver leans in the backward direction, it moves backward. If the lever is kept standstill, then the
vehicle comes to rest, i.e. it works as a braking system. The lever of the TW-SBHT is also working
as the speed controller where a greater the deflection in the lever angle yields a greater velocity. Any
deflection in the lever angle is nullified by the motion of the TW-SBHT in the corresponding direction
of the deflection, using driving motors.

TW-SBHT is based on the dynamics of the inverted pendulum. The inverted pendulum is generally
considered as an unstable and highly non-linear system. The dynamics of the TW-SBHT is complex
and nonlinear as compared to the system dynamics of an inverted pendulum. It is also very difficult to
control the system with uncertain parameters and states. Over the years, the control labs across the
world have been inventing new and innovative control algorithms and implemented them on TW-SBHT.
Shimizu et al. [1] implemented the PID based tilt control movement control for the two-wheeled inverted
pendulum. Lin et al. [2] implemented the teaching of feedback control concepts for self-balancing human
transportation vehicle to maintain the vehicle without falling and to achieve the desired yaw rate
tracking. Lupian et al. [3] designed the Linear Quadratic Gaussian (LQG) controller with a Kalman-
Bucy estimator for better stabilization of TW-SBHT. Huang et al. [4] applied the two Sliding Mode
Control on the inverted pendulum system for velocity control problem. Irfan et al. [5] implemented
the advanced sliding mode control (ASMC) technique and compared the performance of ASMC with
the LQR and sliding mode control (SMC) on the various test signals. They performed the analysis
on the basic of chattering, less settling time and small steady state error. Lin et al. [6] implemented
the adaptive robust controller on the TW-SBHT. However, all the control scheme mentioned above are
the linear controllers. Such controllers offer a significant performance only when the parameters of the
systems are constant, and the system dynamics are linear for approximately a small deflection angle
around the equilibrium point. Typically, for large pitch angle deflection which is due to intentional
maneuvers or external disturbances, the TW-SBHT behaviour is in the nonlinear region, and for such
instances, the linear controller′s results are not promising [7]. Application of nonlinear controllers can
overcome such problems and improve the driving performance. Xu et al. [8] implemented the integral
sliding mode controller on the two-wheeled mobile robots. Li et al. [9] proposed the nonlinear control
design for TW-SBHT. They developed an output feedback adaptive neural network controller. Huang.
et al. [10] presented the fuzzy control scheme on the two-wheeled inverted pendulum.

To overcome the limitation of linear controls and completely realize the agile movements of the
TW-SBHT, it is essential to employ the dynamic characteristics into the model-based control design.
To address this issue, in this work, the State-Dependent Riccati Equation (SDRE) has been employed
to the TW-SBHT control problem. The SDRE control has the benefit of utilizing the non-linear system
dynamics directly in the LQR like optimal control design. In this control design, the system dynamics
is represented as the state dependent coefficient (SDC) matrices which are nothing but a linear looking
form of the non-linear system. The SDC formation is also known as extended linearization or pseudo
linearization. The formation of the SDC matrix is the most critical issue in the SDRE controller.
However, the SDC provides flexibility in the control design fetching the optimal gains. In SDRE, the
cost function is used to handle the optimal tracking problem for the desired trajectories. Then, the
SDRE method is used to find the sub-optimal solution of the optimal tracking problem. It provides
the approximate solution of the optimal tracking problem which avoids the arising of the Hamilton-
Jacobi-Bellman (HJB) which is highly complex and almost impossible to solve. [11]. SDRE control
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technique offers ease of computing as compared to other nonlinear controllers. More importantly, it
retains the nonlinearities of the system. The SDRE, being a classical nonlinear control approach, has
been already successfully applied in the automobile and aviation industries [12]. . Therefore, in this
work, the implementation of SDRE to control the TW-SBHT has been proposed.

In this work, initially, a better dynamic model for TW-SBHT is proposed and then, the SDRE has
been implemented to control it.. The first objective of the control design was to maintain the lever or
pitch angle (ψ) at a specific angle so that TW-SBHT can move with constant velocity, which is generally
required while traveling. The second objective is to stabilize the lever at an upright position at zero
degrees. To overcome the performance limit of linear control in the large external disturbances.The
performance of the nonlinear controller is compared with the linear controller by given a step input of
(12.8) degree as an external disturbance. The system has inherent uncertainties like driver′s mass and
inertia is not investigated here.

2 Mathematical Modeling

Table 1 Parameters of the system

Parameters Symbol Units

Gravitational constant g = 9.81 m/s2

Wheel weight m = 4.6 Kg

Radius of wheel Rw = 0.24 meter

Wheel inertia Jw = mR2
w Kgm2

Transporter body weight Mv = 30.05 Kg

Mass of Driver Mr = 80 Kg

Total Mass M=Mr + Mv Kg

Body height H=-0.03 metre

Length of Driver Lr = 1.8 metre

Distance between the centre of mass and wheel axle L=0.7155 metre

Inertia of Driver Jr = MrL2/3 Kgm2

Body pitch Inertia Jb = 87.89 Kgm2

Inertia of DC motor Jm = 0.0075 Kgm2

Resistance of motor Rm = 14 Ω

Back EMF constant of DC motor Kb = 0.72 Vs/rad

Torque constant of DC motor Kt = 0.833 Nm/A

Gear Ratio of DC motor n= 14 -

Friction coefficient between axle and bearings Fm=0.3 -

Friction between Tyres and ground fw=0.5 -

Input voltage V=24 Volt

In this section, the mathematical modelling of the TW-SBHT is presented. The model is not
derived from scratch but rather selected after analysing the various existing models. Then the suitable
modification is applied in these previous models. The Yamamoto et al [13]derived the model using
the Lagrangian mechanics and considered the yaw angle. However, the model presented in this work
neglects the yaw angle. The equation of motion derived by Arvidsson et al [14].14 is very close to
the real system but they neglected the rolling friction between the tires and ground. The dynamics
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of the TW-SBHT derived by Lin et al. [6] considered the rolling friction and the viscous friction.
However, they neglected the inertia of motor which is a crucial parameter. The viscous friction and
rolling friction have been incorporated while deriving the dynamics of TW-SBHT in this work. The
rolling friction is friction between the tires and ground (cemented road). Here, the rolling friction
coefficient is assumed as the constant with the time. It was also assumed that the wheels are always
with the floor and no slipping is occur between the wheels and the floor i.e. pure rolling is occuring.
The steering of the TW-SBHT i.e. the yaw angle, is neglected while deriving the equation of motion.
Nevertheless, all other crucial parameters like the inertia of motor are considered by due analysis.
The considered system is two degree of freedom system. The TW-SBHT is an underactuated system
because TW-SBHT has two degree of freedom i.e. pitch angle (ψ) of the driving lever and average
angle (θ) of the corresponding wheel but only one is actuated i.e. angular displacement of wheel (θ).
The TW-SBHT model parameters adapted from [14] and coordinates are presented in Table (2) and
Table (2), respectively. The kinematic constraints of the system were derived while assuming the no
vertical motion in Z direction as shown in Fig.1.

Fig. 1 Coordinate system of TW-SBHT (a) Side View and (b) Top View

Table 2 Coordinates of the system

Symbols Units

xl ,yl ,zl Position coordinates of left wheel

xr,yr,zr Position coordinates of right wheel

xb,yb,zb Position coordinates of centre of mass

θl ,θr Angular displacement of left and right wheel respectively

θlm,θrm Angular displacement of left and right wheel respectively

The kinematic constraints equations are:

ẍcos(ψ)+ (̈y)sin(ψ) = Rθ̈l + wψ̈ (1)

ẍcos(ψ)+ (̈y)sin(ψ) = Rθ̈r + wψ̈ (2)

ẏcos(ψ)− (̇x)sin(ψ) = 0 (3)
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Where θ̇ and ψ̇ are the linear velocities along the x and y direction respectively.θ̈l is the angular
acceleration of the left wheel and θ̈r is the angular acceleration of the right wheel.

The expression of the total energy is derived based on the Lagrangian function. The total energy can
be written as the sum of Translation kinetic energy (T1), rotational kinetic energy (T2) and potential
energy (U):

T1 =
1
2

m(ẋ2
l + ẏ2

l + ż2
l )+

1
2

m(ẋ2
r + ẏ2

r + ż2
r )+

1
2

M(ẋ2
b + ẏ2

b + ż2
b) (4)

T2 =
1
2

JW θ̇
2
l +

1
2

JW θ̇
2
r +

1
2

JW ψ̇
2 +

1
2

nJm(θ̇l− ψ̇)2 +
1
2

n2Jm(θ̇r− ψ̇)2 (5)

U = mgzl + mgzr + Mgzb (6)

Coordinates can be expressed as:

(xm,ym,zm) = (

ˆ
Rwθ̇dt,0,Rw) (7)

(xl,yl,zl) = (xm,
W
2
,zm) (8)

(xr,yr,zr) = (xm,−
W
2
,zm) (9)

(xb,yb,zb) = (xm + Lsin(ψ),ym,zm + Lcos(ψ) (10)

By putting the Lagrangian L in the Lagrangian function Eq. (11) and Eq. (12):

d
dt

(
∂L
∂ θ̇

)− (
∂L
∂θ

) = Fθ (11)

d
dt

(
∂L
∂ψ̇

)− (
∂L
∂ψ

) = Fψ (12)

By solving Eq. (11) and Eq. (12) the two equations of motion which governs the TW-SBHT, can be
written as Eq. (13) and Eq. (14):

((2m + M)R2
w + 2Jw + 2n2Jm)θ̈ +(MLRwcos(ψ)−2n2Jm)ψ̈−MLRwψ̇

2sin(ψ) = Fθ (13)

(MLRwcos(ψ)−2n2Jm)θ̈ +(ML2 + Jb + 2n2Jm)ψ̈−MgLsin(ψ) = Fψ (14)

2.1 Actuator model

The DC motor is used in the TW-SBHT due to its simplicity and the capability. The two parallel
wheels are operated with the two BLDC motor.

The generalized forces Fθ and Fψ are calculated by considering the DC motor torque, viscous friction
between the body and motor axle, and the friction between the wheels and ground. The inductance of
the motor is neglected because the electric time constant which is much smaller than the mechanical
time constant [13]. By applying Kirchhoff′s Law on the DC motor, the final equations of Fθ and Fψ

were obtained:

Fθ = a(V )−2(b + Fw)θ̇ + 2bψ̇ (15)

Fψ =−a(V )+ 2bθ̇ −2bψ̇ (16)
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a =
nKt

Rm
(17)

b =
nKtKb

Rm
+ Fm (18)

Now, substituting Eq. (15) and Eq. (16) into Eq. (13) and Eq. (14).Then the equations are solved for
the angular acceleration of wheel θ̈ and the angular acceleration of the driving lever ψ̈,comes out to
be:

θ̈ = (JbVa + 2Jbbψ̇−2Jbbθ̇ −2JbFwθ̇ + L2MVa + 2L2Mbψ̇−2L2Mbθ̇ −2L2MFwθ̇ −4JmFwn2
θ̇

+L3M2Rwψ̇
2sin(ψ)−L2M2Rwgcos(ψ)sin(ψ)+ JbLMRwψ̇

2sin(ψ)+ 2JmLMgn2sin(ψ)+ LMRwVacos(ψ)

+2LMRwbψ̇cos(ψ)−2LMRwbθ̇cos(ψ)+ 2JmLMRwn2
ψ̇

2sin(ψ))/(2JbJw + L2M2R2
w + 2JwL2M + JbMR2

w

+2JbJmn2 + 4JmJwn2 + 2JbR2
wm + 2JmL2Mn2 + 2JmMR2

wn2 + 2L2MR2
wm + 4JmR2

wmn2−L2M2R2
wcos(ψ)2

+4JmLMRwn2cos(ψ))

ψ̈ =−(2JwVa + 4Jwbψ̇−4Jwbθ̇ + MR2
wVa + 2MR2

wbψ̇−2MR2
wbθ̇ + 2R2

wVam + 4R2
wbmψ̇ + 4Jm fwn2

θ̇

−4R2
wbmθ̇ −LM2R2

wgsin(ψ)−2JwLMgsin(ψ)−2JmLMgn2sin(ψ)−2LMR2
wgmsin(ψ)+ LMRwVacos(ψ)

+L2M2R2
wψ̇

2cos(ψ)sin(ψ)+ 2LMRwbψ̇cos(ψ)−2LMRwbθ̇cos(ψ)−2LMRw fwθ̇cos(ψ)

−2JmLMRwn2
ψ̇

2sin(ψ))/(2JbJw + L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2 + 2JbR2
wm + 2JmL2Mn2+

2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ)).

3 Controller Design

The TW-SBHT is designed to use the closed loop controller for the speed control and the balancing
of the lever. The motive of the control design was to stabilize the lever so that the rider does not fall off
from the vehicle and to control the speed of TW-SBHT. Here, the objective is to bring the TW-SBHT
to a constant speed by maintaining the constant deflection in the lever after the initial deflection.

3.1 PID-PID Controller

The PID-PID controller is applied to the state which plays an important role in stabilizing the
system and works according to the control design. The purpose of the first PID was to control the
pitch angle of the lever while the second was to control the wheels speed. The PID-PID control is
applied to the full non-linear system, and a Simulink model is designed for this purpose. In this control
design, the external disturbance is not included. The states used during the control design are:

1. The initial pitch angle of the lever is taken to be as 18◦ which finally becomes 6◦.

2. The initial wheel velocity is set to be 0 rad/sec and the final values are set to be 0.28 rad/sec.
When the pitch angle achieves the desired value i.e. 6 ◦, at the same time the value of wheel
velocity becomes constant that is 0.28 rad/sec.

The simulation was performed in MATLAB, and the results are plotted for four states of the
system.(θ θ̇ ψ and ψ̇) all the inferences from the simulation are presented in Fig. 2, Fig. 3, Fig. 4 and
Fig. 5. The initial deflection in pitch angle (ψ) of 18◦ in the forward direction, demands the sudden
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Fig. 2 PID-PID: Displacement

change in the velocity in a forward direction. This generates the huge notch in the graph of velocity as
shown in Fig. 3. In order to achieve the final value of the pitch angle of 6◦, the TW-SBHT moves in a
forward direction to minimize the error in the angle between the desired and the actual values of the
deflections. As soon as the pitch angle (ψ) converges to the desired angle. Correspondingly, the velocity
of TW-SBHT attains the constant speed of 0.28 rad/s. With the above simulation results, it can be
claim that PID-PID control technique works effectively. The PID-PID controller works according to
the control design strategy and fulfills all the control design goals.

Fig. 3 PID-PID: Velocity

4 LQR controller

Generally, the LQR control is used to provide the optimal solution for a given constraint. The LQR
generates a control action which made the process (plant) stable. At the same time LQR also cancels
out the effect of external disturbances. The optimum performance of LQR is determined by minimizing
the cost function. The problem statement is to locate and optimize the given system at a value or to
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Fig. 4 PID-PID: Lever Displacement

Fig. 5 PID-PID: Lever Velocity

follow some state variable and simultaneously get the maximum value of (PI) by various tests [15].
The LQR controller is the optimal version of the pole placement method. The LQR controller

provides the best control law which moves the system to the desired eigenvalue [16]. In order to get the
system matrices A and B, linearization is applied on the full nonlinear system at the operating point
x = [0,0,0,0]. The initial values of all the four states (θ θ̇ ψ and ψ̇) are taken as x0 = [0,0,π/10,0]T .
The rank of the controllability matrix (A, B) 4 which shows that the system is controllable. The linear
state space is obtained as:

ẋ = Ax−Bu (19)

where

x = [θ , θ̇ ,ψ, ψ̇]T . (20)

The full state feedback controller,U =−Kx where K is the gain matrix. K is computed by minimizing
the cost function. The cost function indicates how bad the system is if states are not at the reference
state.

J =

ˆ
(xT Qx + uT Ru) (21)
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Fig. 6 LQR: Lever Displacement

Fig. 7 LQR: Velocity

Fig. 8 LQR: Lever Displacement
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Fig. 9 LQR: Lever Velocity

In Eq. (21), Q and R are the positive semi-definite and positive symmetric matrices, respectively.
The gain matrix of control law are Eq. (22):

ẋ = (A−BK)x. (22)

The gain matrix is calculated by solving the Eq. (23):

K = R−1BT P. (23)

In Eq. (23), P is a positive semi-definite matrix which is calculated by solving Algebraic Riccati
Equation (ARE) Eq. (24)

AT P + PA−PBR−1BT P + Q = 0. (24)

System matrix A and B after linearization of the non-linear model are computed as:

A =


0 1 0 0
0 −15.4409 −8.6018 15.4901
0 0 0 1
0 2.4999 6.0160 −2.4998



B =


0

10.6735
0

−1.7225


and the weight matrices are computed by hit and trial method, which comes out to be:

Q =


6 0 0 0
0 1e8 0 0
0 0 1e6 0
0 0 0 32

and

R =
[

0.001
]

After computing A, B, Q and R matrices, the gain value K was calculated. The desired state of
the system was taken similar to PID-PID controller, for the comparison purpose. The desired values of
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states (θ θ̇ ψ and ψ̇) are taken as xd = [2.5,0.28 π/30 0] respectively. Initial condition is taken as x0 =
[0 0 π/10 0].The control input U is fed to the full nonlinear system after that simulation is performed,
and the graphs were plotted as shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.The following control input
Eq. (25) was fed to the nonlinear system:

u =−K(x− xd) (25)

Responses of all the four state i.e. (θ , θ̇ , ψ and ψ̇) for LQR controlled model are plotted in Fig. 6,
Fig. 7, Fig. 8, and Fig. 9, respectively. In the LQR response, (ψ) was initially taken as 18◦ and
after few seconds it smoothly attains the desired value of 6◦ as shown in Fig. 8. From Fig. 8 it can
be observed that the initial overshoot is due to the positive deflection of pitch angle in forwarding
direction. TW-SBHT moves in the forward direction and attains the desired angle, as per the control
objective. The TW-SBHT moves with constant velocity in the forward direction because pitch angle
has the constant deflection of 6◦ in a positive direction. These simulation results justify that LQR
effectively controls the TW-SBHT.

5 SDRE Controller

The SDRE control works somewhat similar to LQR control. However, the major difference between
them is the formulation of state space form. In SDRE, the A and B matrices are the state depen-
dent matrices or state-dependent coefficient matrices (SDC). The system dynamics of TW-SBHT are
considered as a pseudo-linear system. The SDC matrices are not unique and there can be n number
of different A and B matrices. The non-uniqueness of the SDC matrices makes the control design
with a sub-optimal approach [17].There are broadly two methods to create the SDC matrices, first by
factorization and secondly by computing the Jacobian of the nonlinear system. In this paper, SDC
matrices are computed by Jacobian. The Jacobian method is generally used in the extended Kalman
filter [18].The control methodology and algorithm are described as:

ẋ = F(x)+ Bu (26)

The nonlinear system is assumed in the form as mention in the Eq. (26) where F(x) is the state vector
which describes the behavior of the controller and B is the control matrix and u is the input. The
system can be described as the state dependent matrices in state space form as in Eq. (27):

ẋ = A(x)x(t)+ B(x)u(t) (27)

The goal is similar to the LQR and PID controller. The cost function for SDRE controller as shown
in Eq. (28) is almost similar to the LQR controller and also the performance index in quadratic form
are likewise as in the previous method i.e. LQR controller.

J =

ˆ
(xT Q(x)x + uT R(x)u) (28)

Where Q and R are the positive semi-definite and positive symmetric matrices, respectively. More-
over xT Q(x)x is the measure of the control accuracy and uT R(x)u is the measure of control effort. The
Eq. (26) and Eq. (27) must satisfy the following conditions:

• F(X) and B(X) as well as Q(X) and R(X) must be continues as well as differentiable in the
interested domain.

• F(0)= 0 So that in the steady state when u goes to zero then F(x) must be goes to zero. Otherwise
there is compatibility issue.
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• B(x)= 0 in the domain of interest.

• F(x)=A(x)x , [A(x), B(x)] must be controllable and point wise stabilize able

After computing the Jacobian of the equation of motion of the system, the A(x) and B(x) SDC
matrices comes out to be A22,A23,A24,A42,A43,A44,B21,and B41 are are mention in the Appendix A.

A =


0 1 0 0
0 A22 A23 A24
0 0 0 1
0 A42 A43 A44



B =


0

B21
0

B41


The Q and R metrics are computed as:

Q =


1 0 0 0
0 1e3 0 0
0 0 10e9 1
0 0 0 1


R =

[
0.000079

]
Now, to compute the control law of the SDRE controller, it requires to solve the state dependent

algebraic Riccati equation (SDARE) (29). The SDARE gives the unique solution of the P(x) which
further used in Eq. (30) to find the gain matrices K.

AT (x)P(x)+ P(x)A(x)−P(x)B(x)R−1(x)BT (x)P(x)+ Q(x) = 0 (29)

The P(x) is used to compute the full state feedback control law which minimizes the above cost
function. The control law can be represented as:

u(x) =−K(x) =−R−1(x)BT (x)P(x) (30)

After the calculation of gain matrix K , -K(x-xd) is feed to the plant or to the dynamics of the
system Eq. (2.1) and Eq. (2.1), where xd is the desire states of the system.

5.0.1 Algorithm of the SDRE controller

• Define a small interval of time or time steps. Start with T=T0=0.

• Put the values of all the states x=[ θ θ̇ ψ ψ̇ ] (start with the initial state x0) into the A and B
matrices and make the SDC matrices A(x) ,B(x).

• Solve the algebraic riccati and find the unique solution of the equation that is P(x).

• Substitute the value of P(x) in the control law in Eq. (30) ) and compute the value of gain
matrices K. Then feed the gain matrices to the equation of system Eq. (2.1) and Eq. (2.1) and
after solving these equations of motion, update the value of x with the new value of states.

• After completing the above steps, increase the value of T by the step size. Iteration will end when
T reaches to its final value Tf .
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Fig. 10 SDRE: Displacement

Fig. 11 SDRE: Velocity

Fig. 12 SDRE: Displacement of Lever
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Fig. 13 SDRE: Velocity of Lever

• Decrease the step size for better accuracy.

The dynamics model of TW-SHBT was established in MATLAB software after incorporating the system
dynamics presented in section (2). The model parameters Tables (2) and the reference states were
kept similar for PID-PID, LQR and SDRE control schemes, for comparison purpose. The numerical
simulation results for [θ θ̇ ψ ψ̇] , for TW-SBHT based on SDRE control, are shown in Fig. 10, Fig.
11, Fig. 12 and Fig. 13,respectively. The initial conditions were x0 = [0,0,π/10,0] and the desire states
are xd = [2.5,0.28,π/30,0].From Fig. 12, it can be clearly seen that the initial deflection of the lever
(which was 18◦) quickly converge to reference angles of 6◦.Therefore, it can be claimed that the SDRE
controller can stabilize the system at a faster rate for the given reference. Similarly, for the velocity of
TW-SBHT (θ̇) Fig. 11, it can be observed that the TW-SBHT stabilizes at the given reference speed
of 0.28 rad/sec from a sudden increase in the speed due to the large initial deflection in the lever. It
maintains the constant speed to the corresponding deflection of 6◦ in the forward direction. The results
for the velocity of lever and displacement of the TW-SBHT are in accordance with the displacement
of lever and velocity of TW-SBHT, respectively.

6 Comparisosn of Performance of PID-PID, LQR and SDRE

The performance comparison of PID-PID, LQR and SDRE controllers for velocity (θ̇) and displace-
ment of the lever (ψ) is shown in Fig. 14 and Fig. 15, respectively. Table (3) represents the comparison
of controllers in terms of settling time, steady-state error and decay time for the velocity of TW-SBHT
(data is fetched from Fig. 14). The data from the Table (3) clearly shows that SDRE responds more
rapidly than the LQR and PID controller.SDRE settles the velocity of the TW-SBHT (θ̇) 2% faster
than the PID-PID controller and 14% faster than the LQR controller.

Table 3 Performance comparison PID, LQR and SDRE θ̇

Parameter PID-PID LQR SDRE

Settling time(s) 0.6025 0.6888 0.5911

Steady state error 0.1% 3.5% 2.6%

Decay Time 0.383 0.389 0.3412
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Fig. 14 Comparison of velocity

Fig. 15 Comparison of Lever Displacement

Table 4 Performance comparison PID, LQR and SDRE ψ

Parameter PID-PID LQR SDRE

Settling time(s) 1.0170 0.4147 0.3550

Steady state error 0.1 % 0.84% 0.75 %

Decay time 1.1138 0.415 0.355

6.1 Stability Analysis

In this section, the ability of all the three controllers to maintain the stability of the lever angle or
the pitch angle at the upright position is analyzed. The step input was kept in the nonlinear region of
large pitch angle which occurred due to the external disturbance7. The step input is kept at 12.8 deg.
for 0.01 sec From Fig16 it can be claimed that the SDRE controller removes the external disturbance
more effectively than the LQR and PID-PID controllers. Furthermore, the stability also analysis with
the pulse disturbance as shown in Fig.17. In the pulse disturbance, the amplitude is kept at 9 deg. for
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Fig. 16 Comparison under external disturbance

Fig. 17 Comparison under Pulse Disturbance

10% time of the simulation i.e. from 2.0 sec to 2.8 sec. Even in this case SDRE controller attenuate
the disturbance more quickly as compared to the LQR and PID-PID controller.

7 Conclusion

This paper presents the mathematical modeling and control of the two-wheeled self-balancing human
transporter. The equations of motions of the system are derived using the Lagrangian Mechanics. The
control objective was to stabilize the velocity of the TW-SBHT for deflection of the lever of the vehicle.
Different controllers viz. PID-PID, LQR, and SDRE were implemented on the TW-SBHT and all the
three control schemes successfully conquered the control objective and converge the TW-SBHT to its
desired states. The response of the PID-PID, LQR and SDRE controller is analysed based on the
settling time, steady state error and decay time. The results show that the SDRE controller has better
performance for controlling the TW-SBHT as compared to the LQR and PID-PID controller.
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APPENDIX

Elements of SDC matrices

A22 =−(2Jbb + 2Jb fw + 2L2Mb + 2L2M fw + 4Jm fwn2 + 2LMRwbcos(ψ))/(2JbJw+

L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2 + 2JbR2
wm + 2JmL2Mn2+

2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ))

A23 = (L3M2Rwψ̇
2cos(ψ)−L2M2Rwgcos(ψ)2 + L2M2Rwgsin(ψ)2−2LMRwbψ̇sin(ψ)+ 2LMRwbθ̇sin(ψ)

+JbLMRwψ̇
2cos(ψ)+ 2JmLMgn2cos(ψ)−LMRwVasi(ψ)+ 2JmLMRwn2

ψ̇
2cos(ψ))/(2JbJw

+L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2 + 2JbR2
wm + 2JmL2Mn2 + 2JmMR2

wn2

+2L2MR2
wm + 4JmR2

wmn2−L2M2R2
wcos(ψ)2 + 4JmLMRwn2cos(ψ)

−2cos(ψ)sin(ψ)L2M2R2
w−4Jmsin(ψ)LMRwn2)

(JbVa + 2Jbbψ̇−2Jbbθ̇ −2Jb fwθ̇ + L2MVa + 2L2Mbψ̇

−2L2Mbθ̇ −2L2M fwθ̇ −4Jm fwn2
θ̇ + L3M2Rwψ̇

2sin(ψ)

−L2M2Rwgcos(ψ)sin(ψ)+ JbLMRwψ̇
2sin(ψ)+ 2JmLMgn2sin(ψ)

+LMRwVacos(ψ)+ 2LMRwbψ̇cos(ψ)−2LMRwbθ̇cos(ψ)+ 2JmLMRwn2
ψ̇

2sin(ψ))/(2JbJw + L2M2R2
w+

2JwL2M + JbMR2
w + 2JbJmn2 + 4JmJwn2 + 2JbR2

wm

+2JmL2Mn2 + 2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ)2.

A24 = (2Jbb + 2L2Mb + 2L3M2Rwψ̇sin>ψ)+ 2LMRwbcos>ψ)+ 2JbLMRwψ̇sin>ψ)+

4JmLMRwn2
ψ̇sin>ψ))/(2JbJw + L2M2R2

w + 2JwL2M + JbMR2
w + 2JbJmn2 + 4JmJwn2 + 2JbR2

wm+

2JmL2Mn2 + 2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wcos>ψ)r2 + 4JmLMRwn2cos>ψ))

A42 = (4Jwb + 2MR2
wb−4Jm fwn2 + 4R2

wbm + 2LMRwbcos>ψ)+ 2LMRw fwcos>ψ))/(2JbJw+

L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2 + 2JbR2
wm+

2JmL2Mn2 + 2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wos>ψ)r2 + 4JmLMRwn2cos>ψ))

A43 = (LM2R2
wgcos(ψ)−L2M2R2

wψ̇
2cos(ψ)2 + L2M2R2

wψ̇
2sin(ψ)2 + 2JwLMgcos(ψ)+

2LMRwbψ̇sin(ψ)−2LMRwbθ̇sin(ψ)−2LMRw fwθ̇sin(ψ)+ 2JmLMgn2cos(ψ)+

2LMR2
wgmcos(ψ)+ LMRwVasin(ψ)+ 2JmLMRwn2

ψ̇
2cos(ψ))/(2JbJw+

L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2+

2JbR2
wm + 2JmL2Mn2 + 2JmMR2

wn2 + 2L2MR2
wm+

4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ))+

((2cos(ψ)sin(ψ)L2M2R2
w−4Jmsin(ψ)LMRwn2)(2JwVa + 4Jwbψ̇−4Jwbθ̇

+MR2
wVa + 2MR2

wbψ̇−2MR2
wbθ̇ + 2R2

wVam + 4R2
wbmψ̇+

4Jm fwn2
θ̇ −4R2

wbmθ̇ −LM2R2
wgsin(ψ)−

2JwLMgsin(ψ)−2JmLMgn2sin(ψ)−2LMR2
wgmsin(ψ)+ LMRwVacos(ψ)
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+L2M2R2
wψ̇

2cos(ψ)sin(ψ)+ 2LMRwbψ̇cos(ψ)

−2LMRwbθ̇cos(ψ)−2LMRw fwθ̇cos(ψ)−2JmLMRwn2
ψ̇

2sin(ψ)))/(2JbJw+

L2M2R2
w + 2JwL2M + JbMR2

w + 2JbJmn2 + 4JmJwn2 + 2JbR2
wm + 2JmL2Mn2+

2JmMR2
wn2 + 2L2MR2

wm + 4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ))2

A44 =−(2ψ̇cos(ψ)sin(ψ)L2M2R2
w−4Jmψ̇sin(ψ)LMRwn2

+2bcos(ψ)LMRw + 2bMR2
w + 4bmR2

w + 4Jwb)/(2JbJw + L2M2R2
w

+2JwL2M + JbMR2
w + 2JbJmn2 + 4JmJwn2+

2JbR2
wm + 2JmL2Mn2 + 2JmMR2

wn2 + 2L2MR2
wm + 4JmR2

wmn2−

L2M2R2
wcos(ψ)2 + 4JmLMRwn2cos(ψ))]

B21 = (MaL2 + MRwacos>ψ)L + Jba)/(2JbJw + L2M2R2
w + 2JwL2M+

JbMR2
w + 2JbJmn2 + 4JmJwn2 + 2JbR2

wm + 2JmL2Mn2 + 2JmMR2
wn2+

2L2MR2
wm + 4JmR2

wmn2−L2M2R2
wos>ψ)r2 + 4JmLMRwn2cos>ψ))

B41 =−(2Jwa + MR2
wa + 2R2

wam + LMRwacos(ψ))/(2JbJw + L2M2R2
w

+2JwL2M + JbMR2
w + 2JbJmn2 + 4JmJwn2 + 2JbR2

wm + 2JmL2Mn2 + 2JmMR2
wn2 + 2L2MR2

wm+

4JmR2
wmn2−L2M2R2

wcos(ψ)2 + 4JmLMRwn2cos(ψ))]
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