Guidelines:

- 1. Work with your assigned teams to complete tasks 1 through 3 in class today
- 2. Complete tasks 4-6 on your own (with appropriate help from your teammates)
- 3. Each student will turn in their own work
- 4. The objective is to design and simulate a speed controller for your unloaded DC motor

Project Description:

Next week we will be controlling your unloaded DC motor. To set this up, we need to design a control strategy and verify that it works in simulation.

Tasks:

- 1. Finalize your transfer function for your DC motor
 - a. Recall that the transfer function for the DC motor is:

$$\frac{\Omega(s)}{E_{in}(s)} = \frac{K}{(Js+b)(L_as+R_a)+KK_b}$$

b. Record your best values for the transfer function parameters in the table below:

Parameter (Units)	Typical Value	Best Source	Your Value
$R_a(\Omega)$	9.2	Project 1 – Task 2a	
$L_a(H)$	0.21(10 ⁻³)	Project 1 – Task 2c	
$K \left(\frac{N m}{A}\right)$	0.014	Project 1 – Task 5c	
$K_b\left(\frac{Vs}{rad}\right)$	0.014	Project 1 – Task 5c	
b (N m s)	2.5(10 ⁻⁷)	Project 2 – Task 2c	
$J(kg m^2)$	$1(10^{-6})$ $\rightarrow 3(10^{-6})$	Project 3 – Task 4c	

- c. Write the transfer function with your numbers below.
- 2. Explore the open-loop control strategy
 - a. For open-loop control, there is no feedback loop. The transfer function of the plant $\left(G = \frac{Y}{U}\right)$ is the same as the transfer function for the system $\left(T = \frac{Y}{R}\right)$ because the reference input (*R*) equals the plant input (*U*).

b. With this control strategy, use the final value theorem to find the final speed for a unit step voltage input on the transfer function.

- c. You could run this model at any desired speed just by changing the input voltage. What voltage would you supply so that the mathematical model predicts a motor speed of 500 rad/s (4775 rpm)?
- d. Explain why this open-loop strategy is not a good idea for a real DC motor where the load might change

- 3. Consider a proportional controller with a feedback loop
 - a. Write a block diagram for a controller that includes a unity feedback path. The microcontroller we used for the last project can be programmed to measure shaft speed from the encoder and compare this to a desired reference input speed. This means the forward path of your block will need to have: a block for the controller (G_c) ; and a block for the motor plant (G).

b. Using proportional control $(G_c = k)$ calculate the steady-state error of this control scheme for a reference step input of $r(t) = 100 \frac{rad}{s}$. This control block converts the input speed error $\left(\frac{rad}{s}\right)$ to an output that is the input voltage to the motor (V), so k needs to have units. Leave e_{ss} as a function of k for now.

- c. What gain would be required for this type 0 system to have a 1% error to a step input?
- d. Calculate the pole locations of the resulting controlled systems with your gain value (*k*). Do these pole locations indicate a stable system?

e. Using your calculated gain value (k), what control signal will initially be calculated when the reference input is stepped up to $r(t) = 300 \frac{rad}{s}$ while the output is still at rest? *Hint: your answer should just be* $u_{init} = 3k$.

f. If you have correctly calculated parts d) and e), at least one of these answers should indicate why this is not an acceptable control strategy. Describe what the problem is.

- 4. The next step will be to try a PI controller. You will need some Matlab tools to select the parameters of this controller.
 - a. A generic PI controller can be written in two different forms in the Laplace domain, we will use both.

i.
$$G_{PI}(s) = k_p + k_i s$$

ii.
$$G_{PI}(s) = K \frac{s+z_i}{s}$$

- b. There are three design criteria for this controller based on a reference step input of r(t) = 300 rad/s
 - i. Steady-state error to a step input should be: $e_{ss} < 1\%$
 - ii. The maximum input voltage to the plant should be: $u_{max} < 10 V$
 - iii. The system should respond as quickly as is practical ($\omega_c = 100 \frac{rad}{s}$)
- c. Create a Bode plot of the plant transfer function without the controller
- d. Choose some appropriate values for K and z_i and add the PI controller to the rest of the system for the Bode plot. Play around with values until you meet the desired crossover frequency.
- e. Convert your standard form K and z_i values to parameters of k_p and k_i
- f. Calculate the initial command signal for your chosen values based on the formula $u_{init} = k_p \left(300 \frac{rad}{s}\right)$. The k_i value does not matter because at time zero nothing has been integrated yet.
- g. Based on what you learned from part e), find some new K and z_i values that will meet the second design criteria (although they may not meet the third). You will need your results from part c) later, so don't delete them.
- 5. Simulate the response of your designed to control to verify that it works
 - a. Use the *feedback* command to find the closed-loop transfer function (T)
 - b. Use the *step* command with the structure [y, t] = step(3 * T), which will store the values for a magnitude 3 step command without making a plot
 - c. Use the *lsim* command with the structure y = lsim(Gc, 3 y, t), which will calculate the output of the control block based on the results of the *step* command
 - d. Make your own plot of the *step* results and verify that you meet the steady-state error criteria

- e. Make your own plot of the *lsim* results and verify that you meet the maximum input voltage criteria at all times (not just at the initial time)
- f. Modify control parameters if needed, then add your final Bode plot to your result from task 4c)
- g. Graphically demonstrate your final controller by making a root locus plot of the entire forward path (Gc*G*.01). Add the poles of T with plus signs onto this graph using

```
plot(real(pole(T)), imag(pole(T)), '+', 'MarkerSize', 7)
```

- 6. Submit the following by the start of class on the due date
 - a. This worksheet with tasks 1 through 3 filled out
 - b. A published version of your Matlab script including
 - i. A Bode plot with three lines representing Tasks 4c, 4d, and 5f
 - ii. A plot based on Task 5d
 - iii. A plot based on Task 5e
 - iv. A root locus plot based on Task 5g
 - v. For all of these plots, use a logical title (which cannot be the default for the plot), axis labels, and a legend where appropriate
 - vi. The final controller transfer function in both standard forms
 - c. Also submit your Matlab script as a *.m file to D2L for originality checking