MORSE CODE DETECTION AND TRANSLATION IN REAL TIME

by

Jeff McDow

Prepared for
School of Engineering

Walla Walla College

Submitted in Partial Fulfillment of
ENGR 496, 497, 498

May 30, 1991

ABSTRACT

Two systems capable of detecting and translating Morse code
in real time were constructed. One system uses a phase-lock loop
to detect the Morse code signal and the other uses an AT&T
Digital Signal Processing (DSP) board. A computer program
written in C translates the signal that has been detected by
either of these methods. The phase-lock loop based system is
capable of accurately translating Morse code signals up to 40
words per minute. The DSP-based system can errorlessly translate
sighals of up to 60 words per minute and can also simultaneously
translate two superimposed signals. Currently, the DSP system is

only able to translate relatively noise-free Morse code.

- i1 --

CONTENTS

ABSTRACT . .« &« v ¢ ¢ v o o « o o o o« =
TABLE OF FIGURES
INTRODUCTION ¢ ¢ ¢ ¢ v « « « .
DETECTION HARDWARE

Phase-Lock Loop

Fast Fourier Transform
COMPUTER INTERFACE « . « .

Interface Card « . .

Digital Signal Processing (DSP) Board

TRANSLATION PROGRAM
Flow of Operation
Smoothing
User Interface

TESTS . &+ ¢ v ¢ v ¢ ¢ o o o o o o o @
Speed Test: Phase-Lock Loop . . .
Speed Test: DSP Board
DSP Multiple Signal Test
DSP System: Translation of Signal
Variable Code Speed Test

LIMITATIONS . .+« & v v ¢ v v o o « o
Noise Sensitivity ; . .
Adjustability
Microprocessor Sensitivity . . .

CONCLUSION v v 4« o o« o o « « =
Summary of Findingsv.

Ideas for Future Work

10

12

14

14

15

16

16

17

17

1s

19

19

20

20

20

21

CITED RE

ADDITION

APPENDIX

A

B:

C:

D:

CONTENTS (Continued)

FERENCES ¢ ¢ & ¢ v ¢ v v v v o v o .
AL REFERENCES ¢« ¢ ¢ « ¢ ¢ « o .
Interface Card Schematics
DSP Board Information
User's Guide to Translation Programé e e e .
Translation Program Flowcharts and Listings

Morse.C« ¢« ¢ o v ¢ v o o v o o .

Code.C ¢ ¢ ¢ v v v v v o o v o« o .

Code_DSP.C 4 v 4 v v v o« v o o
System Specifications

Future Additions « v ¢ « o « .

24

26

28

28

32

35

42

44

53

71

74

77

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

3:

4:

5:

6:

A-1:

A-2:

C-1:

TABLE OF FIGURES

A Morse Code Detector Using a Phase~Lock Loop .
Two Superimposed Morse Code Signals
FFT of Two Superimposed Morse Code Signals . .
Interface Card Circuitry
Translation Program Flowchart
Binary Number String From Morse Code Detector .
Manufacturer's Suggested Interface Circuitry
Additional Interface Card Circuitry
Main Menu
Go Menu ¢ i v e e e e e e e e
Manual Adjustment Menu
Flowchart for Morse.C
Flowchart for Code.C

Flowchart for Code_DSP.C

—_— -

10

i3

30

31

37

39

40

44

53

71

MORSE CODE DETECTION AND TRANSLATION IN REAL TIME

INTRODUCTION

Background. Morse code is a means of electrical
communication that was developed by Samuel Morse in the early
1800's for use with the telegraph. Despite technology that
allows voice communication to any part of the world, Morse code
is still being used today--primarily by amateur radio operators.

An alphanumeric character is represented in Morse code by a
sequence of elements called dits and dahs. These elements are
generated by keying a sine wave on and off for specific periods
of time. For a dah, the sine wave is keyed three times longer
than for a dit. By varying the length of the elements and the
spacing between them, signals of different speeds can be sent.

Most amateur radio operators translate Morse code
themselves. However, with the advent of the computer it is now
possible to translate Morse code entirely by machine. This
allows a person to understand Morse code messages that are being

sent faster than he or she can translate.

Scope of Project. Work performed previously at Walla Walla

College by H.R. Frohne and K. Jonsson had dealt with ways of

detecting a Morse code signal. The goal of my project was to

expand upon this previous work by constructing a Morse code
translation system consisting of a detection unit, a computer
interface, and a computer program to translate the Morse code

signal and display the result.

DETECTION HARDWARE

Because Morse code signals are sent asynchronously and
consist of elements--dits and dahs--of unequal lengths, effective
Morse code detection requires hardware that can immediately sense
a Morse code element and time its duration. A simple way to
detect Morse code would be to use a peak detector which would
turn on when the magnitude of its input signal exceeded a certain
threshold-—-such as when the Morse code signal was on. However,
such a detector would not be very accurate if there was a high
level of background noise, or if signals other than the desired
one were present.

Two designs that have advantages over the simple peak
detector utilize the phase-lock loop and the Fourier transform
respectively [1, 2]. Both of these designs were implemented for

this project.

Phase-Lock Loop. A phase-lock loop is a device which

utilizes feedback to lock onto the frequency of an input signal.

The LM567 tone decoder contains a phase—-lock loop and has a pin

—_ 2 -

that is set at a low logic level whenever the phase-lock loop has
achieved a lock. When the lock-in frequency of the phase-lock
loop is adjusted to the same frequency as the Morse code signal,
the LM567 will lock onto the signal and set the lock-indicator
pin (pin 8) low. By timing how long this pin is at a low logic
level, one can determine the duration of a Morse code element.
The phase-lock loop circuit used for this project is shown
in Figure 1, and is based on the design of H.R. Frohne [1]. By
adjusting the value of R,, the lock-in frequency of the LM567 is
adjusted according to fx1/RC. To detect a Morse code signal,
the signal is attached as shown, and the potentiometer, R,, is
adjusted until the LED flashes in unison with the sound of the
signal. The digital signal from pin 8, indicating the presence

and duration of dits and dahs, is sent to a computer for

processing.
+5
*5
2.2 mF % oo
1€
[IA 4))
TN
) 3 ! > TO compuTeR
LMSGTF
I g
[©.05uF 7~ =
CAORSE = r----~-- T Thnrne
R ey an | e |1 veTeeRe
0.0‘uF y 5 . 24 \
! 005 uf
| SR

Figure 1: A Morse Code Detector Using a Phase-Lock Loop [1]

ast Fourier Transform. A more complex, but more powerful

way to detect a Morse code signal is to perform Fast Fourier
Transforms (FFTs) on it at closely spaced intervals of time. If
a Morse code signal is present, the FFT will show a strong
magnitude component at the frequency of the signal. Conversely,
if no signal is present the FFT will not have a well-defined peak
at this frequency. The power of this method of detection is that
in addition to effectively reducing background noise caused by
other signals, it does not need to be manually adjusted in order
to detect signals at different frequencies, and it is capable of
accurately receiving two or more signals at once [2].

Figures 2 and 3 illustrate how the FFT can separate two
superimposed Morse code signals into separate frequency
components. Figure 2 shows the superposition of two Morse code
signals of different frequencies. By performing a FFT on this
signal, the magnitude of the component due to each of the
frequencies is clearly seen, as shown in Figure 3a. Similarly,
if only one of the signals is present the FFT will appear as
shown in Figure 3b. Thus both signals can be effectively sampled
by performing FFTs on the composite signal.

In order to perform Fourier transforms at a fast enough rate
to allow real-time processing of a Morse code signal, the AT&T
digital signal processing (DSP) board was used. Previously,
Kristjan Jonsson had written software for the DSP board which
could perform a FFT on a real-time signal [2]. The work

prerformed for the current project expanded and modified these

—] -

o

800 1 1 L) T] L) L]

X
600 | /(\ / i
200} \ ! }[| i
" ;
]
: 1
= O N
1=
<
-200}+ \ _
|
—400+ -
Dovo, Taken By ATLT D3 P's
—600 i conec. -
-800 L 1 : ' ! 1 .
0 0.5 1 1.5 2 2.5 3 3.5

Time (ms)

Figure 2: Two Superimposed Morse Code Signals

programs, making it possible to perform FFTs on a Morse code
signal, interpret the results of these FFTs, and output a

translation of the Morse code--all in real tinme.

COMPUTER INTERFACE

In order to interpret a Morse code signal that has been
detected by either the phase-lock loop or DSP board, it is
necessary to interface the detection hardware to a computer.
While the AT&T DSP has its computer interface built in, there are
a variety of ways to provide the interface for the phase-lock

loop. Although the phase-lock loop only requires a single,

305) L | Ll L) T 1

Figure 3a: FFT of Two Superimposed Morse Code Signals
3k
Both Signals Present
2.5+
8 2t
=
.E ¥
g
= 1.5F |
32- Poinr FFVv Pevforsed
1+ By ATsT DsP
s‘ \ {only (‘;es‘\v‘\\\t ﬁ—oé\mmc\(s shawn)
0.5} J & \
ﬁ “ \)ﬁ"““””‘"‘“‘“ e,
o/ 1 1 ! I ‘-’f‘“"\;g"’/ 1 *N"_“"‘!"“-'—-*
0] 0.5 1 1.5 2 2.5 3 3.5
Frequency (kHz)
3.5 T T T T T T T
Figure 3b: FFT of Two Superimposed Morse Code Signals
3 -
Only One Signal Present
2.5+
3 2+
=
-
S ;
= 1.5F {
i
;1
1t
}
0.5} L
"“““"‘“-—-—-.....*..—-ﬂ"’x_\
) L) 1 A N"I‘.\N"*"’ X WWM
0 0.5 1 1.5 2 2.5 3 3.5

Frequency (kHz)

read-only interface line that can easily be supplied by a
computer’'s game port or serial port, a custom—-made interface card
was instead chosen to provide the computer interface. This
choice was made because the computer on which the Morse code
translation program was to run did not contain a game port.

Also, I wanted to have an expandable interface which would allow
the connection of multiple tone decoders to be used in other

applications such as touch-tone telephone decoding.

Interface Card. The fundamental component of the computer
interface for the phase-lock loop tone detector is the JDR-PR2
interface card. This card fits into one of the expansion slots
of an IBM-compatible personal computer and, once certain decoding
circuitry is connected, can provide read and write capabilities
to external hardware [3]. In addition to the circuitry suggested
by the manufacturers of the card, I found it necessary to connect
the hardware shown in Figure 4 (see Appendix A for complete
schematics) [4].

Input from the tone decoder(s) is buffered by the LS541 tri-
state buffer. When a read operation is performed to the correct
address—-in this case 300 hexadecimal--the buffer is enabled and
data from the tone decoder(s) drive the data bus. Otherwise, the
buffer is in a high impedance state. Similarly. when a write
operation is performed, (this feature was not used in this
project), the rising edge of the write signal, as well as a

signal from the LS155 indicating that the write operation is

- 7 -

TO INTERY
IO Seeeey g ACE ChRD

{300KEx SErery
L3155 DEConER Tow L5373 LATLH

\/

2 Aobaess g COMPUTER'S OATA Bus s

300HMEX SELECT
> LS1SS DECODER . 10 LIBHY BUITER
[

ToR seweyy ATA FROM
Tone BECODERS

Figure 4: Interface Card Circuitry

directed to address 300 hex, cause the LS373 to latch the data
off the computer's data bus so that it will not be lost when the

write cycle is over.

DSP Board. The interface to the DSP board is a CODEC A/D
converter which samples the incoming signal at 8 kHz. This data
is input directly to the DSP which operates independently of the
microprocessor of the computer to which the DSP board is
connected [8].

Because the DSP is performing its processing at the same

time as the main computer is running the Morse code translation

—-_— 8 —-—

program, a special means of communication, called handshaking, is
needed to let one processor know when the other processor needs
or wants data.

The handshaking process is facilitated by monitoring the
value of a variable common to the two processors. When the main
processor needs the DSP to perform a FFT on the Morse code
signal, it sets this variable equal to one. When the variable is
set to one, the DSP performs the FFT and sets the wvariable back
to zero. Setting the common variable to zero signals the
translation program to load the contents of the DSP variables
containing the FFT information. When the main computer desires
another FFT to be performed, the handshake variable is set to one

and the process is repeated.

TRANSLATION PROGRAM

The purpose of the translation program is to process the
information that the detection hardware has sent to the computer
via the interface. 1In both the phase~lock loop and DSP board
designs, the information that is input by the detection hardware
consists of a series of binary values (one for each time a read
operation is performed) indicating whether a Morse code signal is
present or not. The translation program processes these samples
and outputs the translation to the computer's monitor. Complete
listings of the translation programs used by the phase-lock loop

system and the DSP board are found in Appendix D.

—_— g ——

Flow of Operation. A simplified flowchart illustrating how

the translation program works is shown in Figure 5 (for more
detailed flowcharts see Appendix D). First, the program times
the duration of various code elements, searching for the longest
element which it calls a dah. Note that the timing is not

performed by a clock, but instead is accomplished by counting the

BEGIN DETERA TG
ELEMENT LENGTHS

= == - DATA INPuUT
{
L\74

A COURNT NumMBER o
CONSECUTIVE s o)

D% TN A DATA STRIVNG

4
OuUTPUT
SMOOTHING ” — = —)
VP DRTE CORREWT T TonTmR
CHARALTER ARRAY
A
DETERMING TV DETERMING

OF STRING (Bt'r) CHARACTER
Dok, Tyec of Space)

[X N
oF
L) ves

me

Figure 5: Translation Program Flowchart

number of consecutive samples of the same binary value that are
received from the interface. From the number of samples in a
dah, determined above, the program calculates the number of
samples in a dit, an intercharacter space, an intracharacter
space, and a word space using the standards given by the Amateur
Radio Relay League [5].

Once the program has determined this rudimentary
information, it begins translating the Morse code signal. This
is done by counting the number of consecutive samples that the
signal is present or absent and determining when a dit, a dah, or
any of the various spacings has been received. After the programnm
has determined the element's identity, it stores a 1 for each dit
and a 2 for each dah in a special array used to keep track of the
character that is currently being received. When the program
detects an intercharacter space or a word space, the array of 1's
and 2's is converted into a base 10 number by treating the array
as a base 3 number. Next, the base 10 number is entered into a
look—-up table containing all the different Morse code characters.
When a match is found in this table, the corresponding character
is printed on the monitor and the character array is set to
zero. (see [6] for a compilation of Morse code characters).

As an example, consider the processing of the letter "n"
which consists of a dah followed by a dit. From the samples that
it receives from the detection hardware, the program determines
that a dah has been sent. The program will also determine that

the dah is part of a character (not a character itself) because

- 11 --

an intracharacter space follows it. Therefore, a value of 2 is
stored in the array used to keep track of the current character.
Similarly, when the dit is received a 1 will be stored in the
character array. When an intercharacter space or a word space is
received following the "n", the program will assign the character
array its base 10 equivalent value as shown below:

2*3 +1 %3 =7
Entering the look~up table with this value, it is found that the
number 7 corresponds to the character "n". Therefore, an "n" is

printed on the computer's screen.

Smoothing and Sampling. Due to imperfections in the

operation of the detection hardware, the input to the interface
program may not consist of a simple string of binary values
corresponding to whether the signal is on or off. At times a
zero {(on) will be received during a space (a string of 1's) or a
one will be received when the signal is on (a string of 0's).
Elimination of this problem relies on the fact that strings of
erroneous samples are short in duration compared to the actual
signal strings and can be corrected by smoothing the input data.
This smoothing is done by simply counting the number of
consecutive ones or zeros and comparing this count to some
minimum value (determined during the initial setup time and
modified during processing) corresponding to the presence of at
least a dit (or, equivalently, an intracharacter space). If the

count is less than this minimum, it is stored temporarily and a

-_ 12 ==

new count is started. The new count is similarly processed and
if it too does not exceed the threshold value for a dit, it is
added to the previously stored count value. This process is
repeated until a signal that is at least as long as a dit is
received. At this time the sum of the undetermined counts (and
whether they were predominately ones or zeros) is looked at to
see whether they constitute a space, an element, or whether they
are a glitch in the signal. If they constitute a glitch, their
total is added to the count value of an adjacent dit, dah, or
space depending on the level (on or off) of the majority of
samples in the undetermined string.

As an example, consider the binary number string shown in
Figure 6 in which 1's represent the signal being off and 0's
represent the signal being on. Also assume that the program has
previously determined that a dah has a minimum duration of 7

samples and a dit has a minimum duration of 2 samples.

Before Smoothing:
1110111100001 000001110 ...

After Smoothing:
1111111100000000001110...

Figure 6: Binary Number String From Morse Code Detector

When the first string of three 1's shown in Figure 6 is
received, it is tentatively labeled as an intracharacter space.
However, the single zero that follows does not constitute a

string of at least two samples, so a count of one is stored

[13 ——

temporarily. When the succeéding string of four 1's is received,
the value of the temporary count is reviewed, and since its
length (one) is less than that of a dit, it is changed to a 1 and
added to the string of three 1's preceding it; which, coupled
with the succeeding string of four 1's, forms a string of eight
1's--an intercharacter space. In a similar fashion, the single 1
in the string of 0's is smoothed into a 0. Therefore the final
interpretation of the binary string in Figure 6 is an
intercharacter space followed by a dah, followed by an

intracharacter space.

User Interface. The user interface for the translation
program is menu-driven and relatively simple to use. When the
program is started, it indicates that it is determining the
duration of the dits and dahs. When the user presses "return",
the program starts to translate the Morse code signal and output
the translation to the screen. If the translation appears
inaccurate, the user can either manually adjust the parameters
that the program has determined, or have the program redetermine
the parameters itself. Pressing "q" terminates program execution
and returns the user to DOS. A complete guide to the code

translation program is found in Appendix C.

TESTS
The following section describes tests that were run using

the detection hardware and software discussed above.

- 14 —--

Specifically, it was desired to see how fast each method of
detection, operating with its corresponding software, could
receive and translate Morse code with a high degree of accuracy.
It was also desired to see if the DSP-based translation system
could receive and translate two or more signals simultaneously.
In addition, the effect of background noise on the ability of the
DSP system to translate a Morse code signal was explored.
Finally, a test was performed to see if the translation program

could track a signal whose speed varied.

Speed Test: Phase-Lock Loop. The maximum speed that the

phase-lock loop design was able to translate Morse code was
determined by taping Morse code signals of various speeds and
then trying to get the phase-lock loop system to translate them.
The maximum code speed that the phase-lock loop unit could
translate was 40 words per minute (WPM) on an IBM-compatible 8088
computer. Because it is extremely difficult to get the phase-
lock loop locked onto a rapid signal, is not known if the 40 WPM
maximum speed is a limitation of the phase-lock loop chip

itself. By running diagnostic programs on the 40 WPM signal, it
was determined that the program was getting about 400 samples in
the space of a dit. 1In contrast, the DSP system, using an
identical means of translation was able to accurately translate
Morse code signals when it was receiving less than 3 samples per
dit. Therefore, one would expect that the translation program is
not the limiting factor in the speed of the phase-lock loop
design.

—_—— 15 ——

Speed Test: DSP Board. The maximum translation speed
obtainable using the DSP board as the method of detection was
determined to be 60 WPM on an IBM—-compatible 80386 computer using
a 32-point FFT. At this code speed, the translation program was
able to obtain 1 - 2 samples per dit and could translate the
signal with 100% accuracy (it should be noted that the signal was
very clear and strong). At a speed of 70 WPM, the DSP system was
able to attain an accuracy of only about 75%.

It is possible that higher speeds could be reached by using
an FFT with less points (i.e. a 16-point FFT). This was not
tested, but I suspect that it would not result in an improvement
in code speed since the limiting factor seems to be the speed of
the computer running the translation program, not the speed of

the DSP.

DSP Multiple Signal Test. Because the DSP system can
distinguish between signals theoretically as close as 250 Hz, the
DSP-based translation system ought to be able to detect and
translate multiple Morse code signals, providing these signals
are properly separated in frequency. To test this, a recording
was made of two Morse code signals differing in frequency by 800
Hz and playing simultaneously. The code speeds were 16 WPM and
13 WPM and the intensity of the 16 WPM signal was slightly less
than that of the 13 WPM signal. Under the control of the program
CODE.EXE, these signals were sent to the DSP board. The DSP

system was able to translate both signals with no errors.

— 16 ——

The translation program was also modified to interpret three
signals simultaneously. The tape I made to do this, however, was
apparently not clear enough and consequently the translation was
garbled. I suspect that the problem is due to the present
system's sensitivity to moderate levels of background noise (see

related discussion below).

DSP System: Translation of Signals With Noise. It was

- desired to see whether the current DSP system could translate

Morse code signals taped from actual broadcasts containing
background noise. However, on the day the tape of real Morse
code signals was prepared, atmospheric conditions were poor and
consequently there was such a high level of background noise that
it was difficult to hear some of the signals when the tape was
replayed. The DSP system was unable to translate these signals,
and also was unable to accurately translate signals embedded in

only moderate amounts of noise.

Variable Code Speed. Originally, I thought it would be

necessary for the translation program to incorporate some method
of tracking Morse code signals that changed in speed as they were
being sent. Therefore, I wrote a procedure to perform this
tracking and inserted it in the translation program. To test
this procedure, a tape of Morse code was made using a computer
program capable of generating Morse code. As the computer

generated the code, the speed was increased 1 WPM after each

- 17 —=-

5 - 10 elements (dits or dahs) were sent. It was found that the
translation program was able to track the signal and translate it
correctly.

Even though the speed tracking test was successful, the
results do not seem significant since the manner in which the
code speed was varied does not mirror the way the speed of a real-
world signal would change. The speed of a real signal would most
likely experience variations if a human was sending it. However,
a person is unlikely to change the speed of the signal by more
than several WPM. Such a change in signal speed is taken into
account when the thresholds for the element lengths are
determined. Thus, for variations in speed due to human error in
sending code, auto-tracking is unnecessary. Also, for large
speed changes, the change in speed is more likely to be abrupt
than it is to be a linear increase or decrease as in the test.
Thus it is more important to redetermine the threshold parameters
completely at periodic intervals than it is to constantly update
them in a smooth, tracking manner. For these reasons, the
tracking procedure was deemed unimportant and was eliminated from
the program.

Presently, if there is a sudden, large change in signal
speed--such as those that occur when someone sending at 13 WPM is
talking with someone sending at 20 WPM--the user needs to select
the "recapture" option in the program in order to redetermine the
threshold parameters. Consequently, the first 3 - 8 characters

of the new signal will be missed. It has not been worthwhile to

—_— 18 —_——

write a procedure that automatically redetermines the operating
parameters at periodic intervals because if the signal comes
unlocked (this is likely since the two signals may be at slightly
different frequencies) the system will need to be readjusted

anyway before proper translation can occur.

LIMITATIONS

Noise Sensitivity. Although both the phase-~lock loop and
DSP board designs work properly when supplied with clean signals,
performance deteriorates rapidly when a moderate level of
background noise is added to the Morse code signal. This effect
is more noticeable with the DSP design than with the phase-lock

loop design (see above discussion).

Adjustability. Both the phase-lock loop and the DSP board
designs require careful manual adjustment to get locked onto the
proper frequency. This is easily done with the DSP board program
by running the diagnostic routine Find Channel (see Appendix C),
however, it would be more desirable to have this automated.

It is very difficult to get the phase-lock loop locked onto
the frequency of the Morse code signal, especially when this
signal is fairly rapid. This is because at high code speeds it
is impossible to tell whether there is flicker in the LED--the
sign of a poor lock. Alsco, if the lock is not correct the
parameters determined by the translation program during start-up

will be incorrect. Therefore, even if one subsequently obtains a

-— 19 —-

proper lock, the output will continue to appear garbled until the
start-up parameters are redetermined. It has been pointed out
that one reason the current design is so difficult to adjust is
because it requires manual adjustment of the potentiometer
connected to the phase-lock loop. If the Morse code signal was
actually coming from a radio, one could adjust the frequency of

the signal instead [7].

Microprocessor Sensitivity. When the DSP-based translation

system was run on different microprocessors, it was found that
performance was significantly related to the processor's speed.
For example, when the DSP system was run on an 8088 computer it
was only able to translate Morse code at 20 WPM, whereas when it
was run on an 80386 machine it was able to translate at 60 WPM.
This seems to indicate that the limiting factor in the design is
the speed of the translation program being run by the host
computer.

The phase-lock loop design has only been tested on an 8088

IBM-compatible computer.

CONCLUSION

Summary of Work. The work performed for this project

satisfied the initial goal of constructing a functional Morse
code translation system. Both the phase-lock loop and the DSP
systems can accurately translate clean Morse code signals. 1In

addition, the DSP system can accurately translate multiple

- 20 ~-

signals at high speeds and displays the potential to compete with
- commercial Morse code translation systems--providing a less
expensive DSP becomes available. Noise considerations were not a
part of this project, but clearly, if the DSP system is to prove

useful, ways of dealing with unwanted noise must be found.

Ideas for Future Work. Several additions and modifications
would improve the portability and performance of the current

design:

* Construct a game port and/or a serial port interface for the

prhase-lock loop detection hardware.

* Write a fast routine to write characters to the monitor,

rather than using the Turbo C putchar function.

* Optimize the computer programs. These programs are the
first I have written using C; as a result, I have probably

not done everything in the best way.

* Optimize the translation program by making it do more
processing while the DSP is computing a FFT. Currently, the
main translation program only does some minor checks during

this time.

- 21 --

Implement a discrete Fourier transform which could be
performed for a given frequency component once the channel
that the desired signal was located on had been determined.

This would be faster than computing the complete spectrum.

Improve the performance of the DSP board design when there
is a high degree of background noise contained with the
desired signal. One way of doing this would be to increase

the number of points in the FFTs.

Inmprove the capability of the DSP board design to
automatically determine the channel that the signal is on,
the appropriate magnitude threshold, and the duration of the

various code elements.

Use a less expensive DSP board to perform the FFTs, thus

reducing the cost of this method of detection.

Write a procedure for the phase-lock loop translation
program which would continuously redetermine the operating
parameters. This would allow one to adjust the phase lock
loop and see the resulting output continuously on the
screen, thus enabling one to tell when a proper lock had

been achieved by when the output started to make sense.

—_—— 2D ==

Create a buffer which would store the samples that are
received when the program is not translating code. This
would allow a person to see what had been received while

he/she was adjusting the program's parameters.

—_— 23 ——

CITED REFERENCES

Frohne, H.R. "CW regeneration using phase—-locked loop

technology." Walla Walla College, 1982.

Jonsson, K. "Real-time Morse code detection using fast

Fourier transform multi-channel band-pass filtering." Walla

Walla College, 1990.

JDR Microdevices. "JDR PR-1 and PR-2 user's manual." San

Jose: JDR Microdevices, 1986.

VanScheik, W. Engineering Student, Walla Walla College.

Personal Interview. College Place, Spring Quarter, 1991.

Amateur Radio Relay League. The ARRL Handbook for Radio

Amateurs. 68th ed. Newington: ARRL, 1990.

Couch II, L. Digital and Analog Communication Systems. 3rd

ed. New York: Macmillan, 1990.

Frohne, H.R. Professor of Electrical Engineering, Walla

Walla College. Personal Interview. College Place, Spring

Quarter, 1991.

_— 24 —

8. Communications, Automation & Control. "D3EMU Software
Emulator and Hardware Reference Manual for the [AT&T] DSP32-

PC." Release 1.8. 1989 [?].

- 25 ==

ADDITIONAL REFERENCES

AT&T. WE DSP32 and DSP32C C Language Compiler: Library Reference

Manual. United States: AT&T Documentation Management, 1988.

AT&T. WE DSP32 and DSP32C C Language Compiler: User Manual.

United States: AT&T Documentation Management, 1988.

AT&T. WE DSP32 and DSP32C Support Software Library: User

Manual. United States: AT&T Documentation Management, 1988.

Borland International. Turbo C: Reference Guide. Version

2.0. Scotts Valley: Borland, 1988.

Borland International. Turbo C: User's Guide. Version

2.0. Scotts Valley: Borland, 1988.

Bracewell, R. The Fourier Transform and Its Applications.

2nd ed. New York: McGraw—-Hill, 1986.

Dale, N. and C. Weems. Pascal. 2nd ed. Lexington: D.C.

Heath, 1987.

—_—_— 26 —-—

Eggebrecht, L. Interfacing to the IBM Personal Computer.
2nd ed. Carmel: Howard Sams and Company, 1990.

Horowitz, P., and W. Hill. The Art of Electronics. 2nd ed.

Cambridge: Cambridge UP, 1989.

Kochan, S. Programming in ANSTI C. Indianapolis: Hayden

Books, 1989.

National Semiconductor. LS/S/TTL Logic Databook. Santa Clara:

National Semiconductor: 1989.

National Semiconductor. Linear Databook. Santa Clara: National

Semiconductor: 1982.

— 27 —_

APPENDIX A

INTERFACE CARD SCHEMATICS

—_— 28 R

APPENDIX A: INTERFACE CARD SCHEMATICS

The circuitry necessary to interface the phase-lock loop to
a computer is shown on the following two pages.

Figure A-1 is the schematic that was sent with the JDR-PR2
interface card [3]. It was necessary to connect the chips shown
in this diagram to the interface card in the spaces marked on the
card. The purposes of this circuitry are to perform address
decoding on the signals from the computer's data bus, to insure
proper operation of the card during direct memory accessing
(DMA), and to buffer data from the interface card so that it does
not constantly drive the computer's data bus.

In addition to the circuitry recommended by the card's
manufacturer, it was necessary to attach the additions shown in
Figure A-2. This circuitry can be read from and written to,
although it was only necessary to perform read operations for
this project. The LS155 decoders perform address decoding using
signals from the circuitry in Figure A-1. These decoders also
determine whether a read or a write operation is occurring.
Output from the decoders enable the LS541 buffer and the LS373
latch, whose functions are, respectively, to buffer the input
from the tone decoder(s) (LM567) and to latch data off the data

bus during a write operation.

—— 29 -

O0V+ QA3 44NE ey

W QIAISINE e——

'
d1-J1 = ¢ hvu.._”._mol..llN
g1-6t * 9 133738 o
<i-¢l - S 133135 et
€1-01 = $ 133735 e—— &,
4 -9 7€ 133735 e,
€ -8°7 2 10313se——ZF gIJ.
£ =% 1103138 T
€ - 0 " 0 1337135 ——ZBEISTINY
o A

ayLeIsCY r

_.

G+

3

ested Interface Circuit

Manufacturer's Sw

Figure A-1

I’N

]
1

S_
Uﬂﬂi‘t . I ' |

e an) - - Zaedl u_ ov+
HJLIMS 2 o B2 Ivs
dId z = - Ev+
oe N sSad ¢ w1 €a1 : m«H
mj—l £ - o
! nbv2STve[s AN
, L] ¢ n vy
) o S— i
— n S+
» [
3
931 & : I 7T
'|G8S e u\yMuﬂ
| ¢ uM.-ro.\ [av+
] AN 3
= - < N3ve
13534+ Q3834408 5 — 138334+
MW3W- 03N3440G : M E
UW3W- q3N343nd <] 2dl = HWIH-
. AR AN -
" ’
.8_
The St
G -
: I :
Y
L3 IS s £a+
—] 9ad+
— : a
” ’ va+
€q+
o 131 £ eq+
alSeS e[e o
2

— .! .L .
C+

20 nay3 0Q
a33344n8

29%d AXAIN NO LIndy1d OL

Additional Interface Card Circuit

e A-2

Fi

ABLIAIWLD
TeNu3Lx3
ol

CAIAWIHID 3G
WGRA PINQ

Oy

Mw

LS373°

I
[3
L PAY
w S
v
vt oL
ﬁl Bt v
g
T {
e Lrsrite g -+
[3
Thee b v
G b LG W QR vy € v
F ¥ T2} ¢
3 Y
S v oL
]]
\
o b 2 A“, SINIE
S+

QAR
v ERL EY EMNNEY
WO 4

APPENDIX B

DSP BOARD INFORMATION

—_— 32 [y

APPENDIX B: DSP BOARD INFORMATION

The following tells how to use the AT&T DSP board on the
computer network at Walla Walla College. More complete
information on the DSP board is found in the sources listed in
the bibliography of this report. 1Information on changes to the
campus computer network configuration is obtainable from the
Engineering Project Coordinator.

To install the DSP board, find an interface card address
that is not occupied in the computer you will be using and set
the DSP's switches to this address--as shown on page 18 of the
"DSP Hardware Reference Manual" [8]. Next, plug the DSP board
into an interface card slot, turn the computer on, then type "set
DSP32=XXX" at the DOS prompt, where "XXX" is the hexadecimal
address of the DSP--for example "230". The DSP is now ready to
run programs that have already been compiled.

If it is desired to compile a new program, it is necessary
to 1link to the DSP libraries contained on the campus computer
network. This is done by typing:

"set dsp32sl=g:\engrapp\att\dsp32s1™”
at the DOS prompt. Since the DSP compiler must make use of the
file dsp_util.c, I found it convenient to copy this file into my
own account.

When writing a program that will be used with the DSP, it is

-—— 33 —--

necessary to select the "large"” memory model (I wrote my programs
using Turbo C Version 2.0).

A program that is to be run on the DSP must be compiled
using the AT&T DSP's own compiler. To compile, type:
"g:\engrapp\att\dsp32sl\bin\d3cc mycode.c -0 mycode -1lm -lap"
Here, mycode.c is the source code to be compiled, and mycode is

the name that the compiler will give to the object code and to

the executable. The directives, -1lm and -lap, are necessary if
it is desired to include procedures in the AT&T DSP's math and

applications libraries, respectively.

- 34 —--

APPENDIX C

USER'S GUIDE TO TRANSLATION PROGRAMS

—-—— 35 -

APPENDIX C: USER'S GUIDE TO TRANSLATION PROGRAMS

There are two Morse code translation programs contained in
Appendix D of this report. One program, MORSE.EXE, is written
for use with the phase-lock loop detection hardware and the
other, CODE.EXE, is written for use with the AT&T DSP board. The
operation of both of these translation programs is fairly similar
and self-explanatory. Since preparing to run the program which
uses the DSP board is slightly more complicated, the instructions

that follow will deal with this program.

PRELIMINARIES

In order to use the translation program CODE.EXE, the AT&T
DSP board must be installed in the computer on which the program
will be run. This is done by plugging the DSP board in one of
the expansion slots of an IBM compatible personal computer then
sétting the address at which the computer will look for the DSP
board. For example, if the DSP board's switches are set at 230
hexadecimal, one would plug the DSP board in any one of the
computer's expansion slots and type "set dsp32=230" at the DOS
prompt. To determine which address the DSP board is located at,
or to change the DSP board's address, see page 18 of the

"Hardware Reference Manual for the DSP32-pC" [8].

—— 36 —

MAIN MENU

After the DSP board has been properly installed, the Morse
code translation program CODE.EXE can by executed by typing
"code" at the DOS prompt. First, the program will display the
main menu which is shown in Figure C-1. Each of the possible

options that can be selected from this menu are discussed below.

Revision 9
F - Find Channel G - Go
§ ~ See Durations ESC ~ Exit

Figure C-1: Main Menu

S - See Durations. Pressing "S" or "s" (none of the menu

options are case sensitive) causes a subroutine to be executed
that shows the magnitude and the duration of signals on a given
channel that exceed a certain threshold (see G - Go for a
description of how to choose different channels and set the
threshold). This routine can serve as a diagnostic tool in

determining how many FFTs are being performed in a dit or a dah,

- 37 —--

and it can also be used to directly see if the proper sequence of
dits and dahs is being received. Pressing "Q" or "g" during

execution of this procedure returns one to the main menu.

F_- Find Channel. Pressing "F" or "f" results in the

execution of a subroutine that displays the channel on which the
signal with the largest magnitude is being received. This
routine is useful in determining the channel on which a Morse
code signal is appearing in the FFT calculation. When a dit or a
dah is present, the channel that is being output to the screen
should correspond to the channél on which the Morse code signal
is appearing in the FFT. Pressing "Q" or "q" while this

subroutine is being executed will send one back to the main menu.

ESC — Quit. Pressing ESC terminates execution of the

program and returns one to the DOS prompt.

G - Go. Choosing this option results in the display of a
different menu. Simultaneously, the program starts locking onto
the input signal by determining the length of different code
elements, as well as determining the channel and the magnitude of
the signal. Once the néw menu has appeared, the user receives
the following prompt: "Determining operating parameters, press
RETURN to end." The user should wait until at least one dah and
one dit have been received before pressing RETURN, otherwise the

program will have no way of knowing the speed of the signal that

—_ 38 —_

is being received. After RETURN has been pressed, the program
will begin to translate the input signal and print the
translation on the monitor. The options found in the menu that
appears when Go is selected allow the user to fine-—-tune the
parameters that were initially determined by the program. These

options are discussed below.

GO MENU

When "G" or "g" is pressed at the main menu, the following

menu will appear at the bottom of the screen:

R - Recapture
A - Auto Adjust Q - Quit

M - Manual Adjust

Figure C-2: Go Menu

R _— Recapture. Recapture is a procedure that will

completely redetermine the element lengths, channels, and peak
thresholds that were determined when the Go Menu was entered.

Recapture has not been implemented yet.

A - Auto Adjust. This option causes the program to repeat

the determination of element lengths that was originally

performed when the Go option was selected. This procedure is

- 309 —=

useful when there is a significant change in the speed of the
code being received and the program has not been able to track

it.

M - Manual Adjust. Pressing "M" or "m" allows one to

directly change the values of.the dit, dah, and space durations.
One is also able to change the number of points in the FFT and
the channel of the FFT that is being used to determine the
output. When Manual Adjust is selected, the user is prompted for
the channel that is desired to be changed. Here, channel refers
to the two signals that are displayed on the screen. Choosing
channel 1 allows one to modify the parameters associated with the
signal that appears in the top half of the output window,
choosing channel 2 allows modification of the parameters for the
signal in the lower half of the output window. The menu that
appears when "M" or "m" is pressed is shown below and is self-

expanatory. For instance, one can change the minimum number of

Change Parameters

> Lowest IntraChar 2
Lowest CharSpace 12
Lowest WordSpace 30
lowest Dit 2
Lowest Dah 12
Peak Threshold 1500
FFT Points 32
Channel 11
Quit

Figure C-3: Manual Adjustment Menu

- AQ —--

samples (FFTs) in a dit from 10 to 5 by moving the cursor down to

lowest dit, pressing RETURN, then typing 5 followed by RETURN.

Q — Quit. Choice of this option returns the user to the

main menu.

TIPS FOR USE OF THE PROGRAM

The diagnostic tools, See Magnitudes and Durations and Find
Channel, are not usually used when one desires to receive a Morse
code signal. Instead, these procedures are mainly used when one
is trying new types of signals or when one desires to see the
type of information that the translation program is receiving
from the DSP board.

Because the way the program finds the channel on which the
signal is located has not been perfected, it may be desirable,
when trying to translate a new signal, to first run Find Channel
to determine the channel that the signal is on. Next, one should
select Go, immediately going to the Manual Adjust menu and
changing the channel to the value determined when running Find
Channel. Lastly, one needs to run the Auto Restart option to
redetermine the element durations (Auto Restart will not change

the channel that you have entered at the Manual Adjust menu).

- 4] ==

APPENDIX D

TRANSLATION PROGRAM FLOWCHARTS AND LISTINGS

——— 42 —_—

APPENDIX D: TRANSLATION PROGRAM FLOWCHARTS AND LISTINGS

Listings of the following three programs appear in the pages

that follow:

MORSE.C —-- This program is used with the phase-iock loop
interface card. It assumes that the phase-lock loop is =zt

address 300 hexadecimal.

CODE.C —- This program is used with the AT&T DSP board.
CODE.C is compiled using the Turbo C compiler, however, in order
to run CODE.C the DSP based program, CODE_DSP.C, must be compiled

and in the current directory.

CODE_DSP.C -- This program is actually run by the DSP board

and must be compiled using the AT&T DSP's compiler.

—— 43 [y

APPENDIX D:

MORSE.C

RE-DETLR™MINY
ELEMARENT
LENGTRS

BEGTN

J

DETERMING
CLEMEWT LENGTHS

L

MATN MENW

RETLRY

NG

GET SAaMpPLEs
FRO™M TRTERINCE
CARD

TQ
Dos

SMOQTHING

4

I3 OaTA STRTNG

WO

AR TLEMENTY oR
& sPRee Y

Yes

y/

AR T X5 IY 7
SCRCE ow
CRALA LN\

FTLARE ELEMEMT
T COREE T

CRRRMCT € 6,
PRE R

ELETNE 8T

sPace

N

LOMGER T AN

A TRIRKCH MR

sehee 7

Yes

DCTERMINE

Figure D-1:

CORRACTEQ
ouyeur IV

-— 44 —--

Flowchart for Morse.C

/**/

File Name: Morse.C

Progranmer: Jeff McDow

Date: 11-20-90

Last Revision: 4-18-91

Written In: Turbo € Version 2.0

Description: This program operates in conjunction with a

specially constructed PC interface card
containing a phase-lock loop (L567 tone decoder)
to translate a Morse code signal in real time.

Input: Input consists of decimal numbers read from the
interface card (address 300 hexadecimal). A
nonzero sample indicates that no Morse code
signal is present. A sample value of zero
indicates that a Morse code element is present.

Output: The translation of the Morse code signal (pieced
together from the samples) is output to the PC
monitor.

Limitations: This program performs its degired function,

however, it is the first program that the
programmer had written in € and consequently

may not be optimum.
/**/

finclude <dos.h>

#include <stdio.h>
#include <alloc.hd
#include <stdlib.h

#define DITSCALE 0.3 /* lowest_dit = dit*ditscale */
#define DAHSCALE 0.55 /* lowest_dah = dah - dah*dahscale */
#define ILSPACE 0.3 /* lowest_intrachar = dit*ilspace */
#define CUSPACE 0.4 /* highest_charspace = dah + dah*cuspace */
f#idefine THSPACE 0.2 /* highest intrachar = dit + dit*ihspace */

[Rxkxxdkddxdxkxkxkx Fupction Declarations —Xkkkkkkkkkkkkk /

void out_char (int letterl);
void recapture();

void new_line check();

void setup();

JHxkdddkkkkkxkakkxk Global Variables *k&kkkkkkikkkkkkkkk [

unsigned int £, off;

int kbhit(), letter[7], counter, i, on, wherex(), wherey():
int lowest_dah, lowest dit;

int lowest_intrachar, highest intrachar;

int highest charspace, inbetween, last_ditdah, key;

[xF*xkkkkkdsxkkk Function Definitions dkkdkkikkkikkkikkkd /
/***/
/**/

Name: out_char

45

Called By: main

Input: Input to the function is a T-element array
containing 1's, 2's which represent the dits and
dahs, respectively, of a Morse code character.
If the character is not 7 elements long, the
remainder of the array contains 0's.

Qutput: Output consists of writing the character
represented by the input array, letter, to
the computer's monitor.

Description: This function determines the identity of
an array of dits and dahs representing a
Morse code character by treating the array
as a base 3 number then converting it to a base ten
number and entering that value into a search tree
containing all possible letters. The result is
printed on the computer's monitor.

/ Jode e dedede gk ki gk g K dok ded K dedo gk K de kI do i T dodo e e ek ke e d ke e o e ok ke e e e e de e ke ke ok ok /

void out_char (int letter{])

{

int i, letout, done;

int aa,bb,cc,dd,ee, ff,gg hh,ii,3j Kk, 11,mm,00,00,0p,
qq,rr,ss,tt,un, vv, Wi, XX, YV, 22, quest , period, comma, SK, AR, DN, BT,
nl,n2,n3,n4,n5,n6,n7,n8,n9,n0;

aa=7; bb=41; cc=50; dd=14; ee=l; ff=49; ¢gg=17; hh=40; ii=4; jj=19;
kk=23: 11=43: m=8; nn=5; 00=26; pp=52; q¢=T1; rr=16; ss=13; tt=2;
w=22; vw=67; ww=25; xx=68; yy=T7; zz=d4; n0=242; nl=241; n2=238;
n3=229; nd=202; n5=121; n6=122; n7=125; n8=134; n9=161; comma=692;
quest=400; period=637; AR=151; SK=634; DN=149; BT=203;

/* Convert letter to an integer value */

letout = 0;
done = 1;

vhile (done = 1)
{
if (letter[0]==0) break;
else if (letter[0]==1) letout = 1;
else letout = 2;

if (letter[1]=0) break;
else if (letter[1]==1) letout = letout + 3;
else letout = letout + 6;

if (letter[2]=0) break;
else if (letter[2]==1) letout = letout + 9;
else letout = letout + 18;

if (letter[3]==20) break;
else if (letter[3]==1) letout = letout + 27;
else letout = letout + 54;

if (letter[4]==0) break;
else if (letter[4]=1) letout = letout + 81;
else letout = letout + 162;

46

if (letter[5]==0) break;
else if (letter[5l==1) letout = letout + 243;
else letout = letout + 486;

if (letter[6]==0) break;
else if (letter[6l=1) letout = letout + 729;
else letout = letout + 1458;

done = 0;

}

/* Find What the Character is and Qutput it */

if (letout{(=pp)
if (letout(=gy)
if (letout<=nn)
if (letout<=ee)

else

else

{

if (letout==ee) putchar('e');
else putchar(' ');

}

{

if (letout==tt) putchar('t'):
else if (letout=1ii) putchar('i’);
else if (letout=nn) putchar('n’);
}

if (letout<=ss)

else

else

{

if (letout==aa) putchar('a');
else if (letout==ss) putchar('s')
else if (letout==wm) putchar('m')
}

{

if (letout==dd) putchar('d');
else if (letout==rr) putchar('r')
else if (letout==gg) putchar('g")
}

-
r
-
r

-
r
-
r

if (letout<=hh)
if (letout<=kk)

else

else

{

if (letout==uu) putchar('u');
else putchar('k');

!

{

if (letout==00) putchar('c');
else if (letout==hh) putchar('h'};
else if (letout==ww) putchar('w');
}

if (letout<=zz)

{

if (letout==11) putchar('l');
else if (letout==bb) putchar('b'};
else if (letout==zz) putchar('z');
}

47

else
{
if (letout=cc) putchar('c');
else if (letout=Fff) putchar('f'};
else if (letout==pp) putchar('p');
1

else -
if (letout<=RR)
if (letout<=jj)

if (letout<(=xx)
{
if (letout=xx) putchar('x');
else putchar('v');
}

else
{
if (letout==qq) putchar('q');
else if (letout=yy) putchar('y’);
else if (letout==jj) putchar('j');
}
else

if (letout<=n7)
{
if (letout==n7) putchar('7');
else if (letout=mb) putchar('5');
else if (letout=mn6) putchar('6');
1

else
{
if (letout==n8) putchar('8');
else if (letout=DN) putchar('/'):
else if (letout==AR) putchar('+');
}
else

if (letout<=n2)
if (letout<=n4)
{
if (letout==n9) putchar('9');
else putchar('4');
}

else
{
if (letout=n3) putchar('3');
else if (letout==n2) putchar('2');
else if (letout==BT) putchar('-');
}
else

if (letout<=quest)
{
if (letout=ml) putchar('l');
else if (letout=n0) putchar('0');
else if (letout=xuest) putchar('?");
}

{

if (letout=period) putchar('.'):
else if (letout==comma) putchar(',');
else if (letout==SK) putchar('#'):

}

else

}

/ Feksekdokkkkdkkkkkkkkkkkkkiikkkikikikiokkikkkkkikdkikikikkkkikkikkikk /

48

/ sk d e do Je ek e o e ek ok e ok ok ok 3k 3 e ok ke ke e e ok 9k e o ok ok ok ok ok e ke ke s sk ke sk ke ke ke e de ke e sk ke ke ke ok / 4 9
Name: recapture

Called By: main
Input: None
Output: None
Description: This function determines the length of a dah

by taking successive samples from the interface
card, adding them, and determining the longest
time the Morse code signal is on. This length
is called a dah, and from it all the other Morse
code parameters are calculated. This function is

void recapture ()

{
int longest, dit, dah;

/* Determine the length of the longest Morse code element,
stop when the user presses any key. */

while (kbhit()=0)
{
f = inportb(0x300);
while (f=0)
{
on = onH;
f = inportb(0x300);
}
if (on > longest)
longest = on;
on = 0;
}

/* Determine other Morse code parameters */

dah = longest;

dit = longest/3;

lowest_dah = dah - dah*DAHSCALE;
lowest_dit = dit*DITSCALE;
lowest_intrachar = dit*ILSPACE;
highest_intrachar = dit + dit*IHSPACE ;
highest_charspace = dah + dah*CUSPACE;

longest = wherex();

dah = wherey();

gotoxy(60,1) ;

printf ("dit %d ",dit);

gotoxy (longest,dah) ;

}

/x,‘u‘ Jedo Je ok K Jede kKK sk kkkkkkkkikkkkkikkikikikk -.U(/
/;;' e Y v T ¢ e T o Fe e I ke e F Je g K *k *% *kkkkkk Yok Rk ke dekkk /

Name: new_line check

Called By: main 50

Input: None
Output: None
Description: This function determines when the output

to the monitor needs to be put on a new line.
The function also clears space ahead of the.
output so that the current output is not
writing over the top of previous output.

/ koo R dod K K e Kk I K dodk de e dod e ok e e K e d R KK KKK IR KKK KKK IR Kk ke de ook ke do o dok Kk ke /

void new_line check()

{
int posx, posy;

posx = wherex(); /%% Check to see if a new line is needed **/
if (posx > 60)
{
posy = wherey(); /** Clear a space ahead **/
if (posy < 19)
{
gotoxy(1,posy+3) ;
clreol();
s}:otm!y(posxmosy):
else
{
gotoxy(1,posy-19+4) ;
clreol();
s}rotmcy(posx,posy);
if (posy == 21) /** Start a new line **/
{
gotaxy(1,3);
printf (u\nu) :
}
else
printf ("\nn) :
}
}

/ dokkdek gk kdkkkdkkkkdokkdokkded ik kkkkdokkkkkkkkdkkkdokkkikkkkkkkkik /
/ Fkkdoddokdkkdd ok kkkkdokkkkdokkkkkkdkkkikdkkkkkkkkkkkkkkkkkkkkikkkkk /

Name: setup

Called By: main

Input: None

Output: None

Description: This function sets up the screen by drawing

the menus.
/ e K Jo e Fe e e do e e T e e e e o v 3k e e v ok o ke e ok ke e e e de e ek K ek ke ok ek ke ek ek ks ke ke ko ke ke ko /

void setup()

{
int iset, wpm;

clrscr(); 51
wpn = 13;

gotoxy (60,2);
printf ("wpm = %d",wpn) ;
gotoxy(5,24) ;
printf ("r — Recapture");
gotoxy(60,24) ;
printf ("g - Quit");
gotoxry(1,22); /** Draw Horizontal lLines **/
for (iset=l; iset<8l; iset+)
putchar (196) ;
gotoxy(1,3); /** Draw Horizontal Lines **/
for (iset=l; iset<8l1; iset++)
putchar (196) ;

gotoxy(1,4);
}

/**

MAIN PROGRAM

**/
main()

setup();
recapture() ;

/** Initialize Screen **/
/** Determine Element Lengths **/

on=0;

off = 0;

f = inportb(0x300);
counter = 0;

while (key!=113)
{
if (kbhit() !=0)
key = getch();
if ((key=114) || (key==82))

/** Repeat until 'q' is pressed **/

/** Tf user presses 'r' or 'R' **/

recapture(); /** then redetermine parameters **/
if (£=0) /** If Morse code signal is present ...**/
{ /** then process it *% [
on =0;
while (£==0) /** Yhile signal is on ... **/
{
on = ot /** increment length of signal **/

f = inportb(0x300);
}

if (on > lowest_dit)
{

if (inbetween < lowest_intrachar)

/** get a new sample from interface **/
/** If length was longer than lowest dit **/

/** if last space was not at least an intrachar **/

last_ditdah = last_ditdah + inbetween + on; /** then add length to last element **/

else

if (inbetween < highest_intrachar)

{
if {(counter > 7)
{

printf(" ERROR ")

/** if last space is an intracharacter space... **/

/** if character array is full, print error msg **/

LY

out_char (letter);
for A=1; 1<=T7; i+
letter[i-1] = 0;
counter = 0;
}
else /** otherwise find if element is dit or dah **/
{
if (last_ditdah > lowest_dah)
letter[counter] = 2;
else
letter[counter] = 1;
last_ditdah = on; /** store element in character array ... **/
counter = counter++; /** and get ready for next element *%/
}
}
else
{
if (last ditdah > lowest_dah) /** if last space was word or interchar... **/
letter[counter] = 2; /** store element in character array **/
else
letter[counter] = 1;
last_ditdsh = on;
counter = 0;
out_char (letter); /** print character out **/
for i =1; i <= 7; i+H) /** reinitialize character array **/
letter{i-1] = 0;
if (inbetween > highest charspace) /** if last space was a word space **/
{
putchar(® '); /** then output a blank space and ... **/
new_line check(); /** check to see if a new line is needed **/
}
}
inbetween = 0; /** reinitialize spacing counter **/
}
else
inbetween = inbetween + on;
}
/** if a space is being received **/
if (£1=0)
{
off = 0;
vhile (f!=0) /** increment space counter and get a new sample **/
{
off = off+;

f = inportb(0x300);
}
inbetween = inbetween + off;
}
}

52

APPENDIX D: CODE.C

BeeTIN
DITALNOSTICS: Quiv RETWRN
[Ty
o) Find Chanacl | MATN MEn L °
L) See Vusaxises bos>
' QDasive T O
DETERMMTINE
CLEMENT LENLTWS
Qu [& o
ABILST PEREBASTERS,
SR NCINA (IR
5) Bute moxt Q&\\Y
REQULSY FFT
FROM ©SP
FFT
DODE, ?
ves
- GET FET
TROFORMATIAN
PROCESS SAMTIES PRoCESS SAMPLES
FOR 2T ewmaL | FOR ST6&waL 2
(Sawme as P My) (Bere o pody)

Figure D-2: Flowchart for Code.C

—_— 53 _—

/***
Filename: CODE.C

Programmer: Jeff McDow

Date: 4-29-91

Last Revision: 5-14-91

Written In: Turbo C Version 2.0

Description: This program has the capability of translating
two Morse code signals simultaneously and in
real-time.

Input: Input is received from the AT&T Digital Signal
Processing board which samples the Morse code
and does a FFT on it under the control of the
program CODE DSP.C. Input consists of the magnitude
of a specified bin number in the FFT.

Output: The translation of the Morse code signal(s)
(pieced together from the samples) is output
to the computer's monitor.

Limitations: This program performs its specified function. The
options “See Magnitudes and Durations", "Find
Channel”, "Auto Adjust”, and "Recapture" are not
implemented in this version of CODE.C. This program
mast be run with the compiled version of the DSP
based program CODE DSP.C in the same directory.

***/

#include <dos.h>

#include <alloc.hy
#include <stdio.h>
#include (fentl.h
#include <stdlib.h>
#include <conio.h>

$#define DITSCALE 0.1 /* lowest_dit = dit*ditscale */

#define DAHSCALE 0.35
#define TLSPACE 0.1
#define LWSPACE 1.5
f#define LCSPACE 0.2

#define SUX 1
#define SUY 4
#define SLX 80
#define SLY 21
#define MUK 1
f#idefine MUY 23
#define MLX 80
#define MLY 25
fidefine WUX 31
#define WUY 5
#define WLX 61
#define WLY 19

/* lowest_dah = dah - dah*dahscale */
/* lowest_intrachar = dit*ilspace */
/* lowest_word = dah + dah*cuspace */
/* lowest_char = dit + dit*ihspace */

/* SUX, SUY, SLX, SLY define the */
/* corners of the output window. */

/* MUX, MUY, MLX, MLY define the */
/* corners of the main menu. */

/* WUX, WUY, WLX, WLY define the */
/* corners of the Manual Adjustment*/
/* menu. x/

[rFdkdkdxdskickkxkkskikkx Function Declarations *¥kkkkikikik/

void exit_routine();
void download ();
void init ();

54

void do_fft (); 55
void out_char(int letter[], int *xloc, int yloc); -
void new_line check(int *xloc, int *yloc);
void setup();
void process_off (int *inbetween, int total);
void process on(int letter[], int *inbetween, int *1ddah,
int lowest intrachar, int lowest_char, int lowest word

int *counter, int lowest_dit, int total, int *xloc,
int *yloc, int lowest_dah);
void get_character();
void manual_handler(int *lowest_intrachar,int *lowest_char,int *lowest_word,
int *lowest_dit,int *lowest_dah,int *peak_
thresh,
int *channel);
void see_handler();
void go_handler();
void find handler();

[hikxksakkkkakxkik Global Variables *kkkikkikk Kk |

int letteri[7], letter2[7], totall=0, total2=0, lastl=0, last2=0;
int inbetweenl=0, inbetween2=0, valuel=0, value2=0, do_1=0, do_2=0;
int £, off, do_go, do_see, do_manual, do_find, do_recap, do get;

int kbhit(), on, wherex(), wherey(), letentl=0, letemt2=0;

int lowest_dahl, lowest_dah2, lowest_ditl, lowest dit2;

int lowest_intracharl, lowest_intrachar2, lowest_charl, lowest char2;
int lowest_wordl, lowest_word2, 1lddahl=0, 1ddah2=0;

int peaknum, wpm, dit, fftpts, channell, channel2;

int peak threshl, peak_thresh2, xlocl, ylocl, xloc2, yloc2;

char param menu[31*15*2], clear display[18*80*2], clear menu[80*3*2];
char main menu[80*3*2], go_menu[80*3*2], save pmenu[31*15%2];

long flag, n, magl, mag2, chanl, chan2;

JHRHRI IR IRIKIRIRIIIKKIIIIIIIIII KK I]I I KKK IF K dok dekdedede ke |
[Rkdckkikickkkkkkkkk Function Definitions *kkikickikkdkkkdckikkk [
JRIKIKIKKKIKIRIK IR III KKK I KKK Sk I ok Seddedk It dek Sede ek deded e dekdeok

Name: exit_routine
Called By: main

Description: This function clears the computer's monitor
vwhen execution of this program is completed.

Global Variables Changed: None

kdkkk ek Jede gk h dok Kk ok KIkkkX X ;,'u‘(;/

void exit_routine()
{
clrser();
exit(1);
}

/ e dedede sk Kk sk sk ek ke d ke de ko ke ek ok ek ook ok gk ek e Kok ko de e e ek ok ok ok ek k /
/ dododdodedo gk ek ek ok de g ok d ke ek ek ke kg ek ek ok ok ko k ok kk ok dk ke kk kk ke k

Name: download
Called By: init, manual handler
Description: Values of the variables ffipts, channell,

and channel2 are loaded into variables in
the DSP board.

Global Variables Changed: None

**/

void download ()

{

dsp dl_int (n, fftpts);
dsp_d1 int(chanl, channell);
dsp_dl_int(chan2, channel2);
}

/**/
/**

Name: init
Called By: main
Calls: download

Description: Initializes the DSP and assigns addresses
to DSP variables using "find_label name".

Globals Changed: None

Adapted From Kristjan Jonsson's program CW_DET1.C
**/

void init()

{
if (!dsp_dl_exec ("code _dsp"))
{

printf ("cannot load code _dsp to dsp32\n\n");
exit(1);
}

flag = find_label name ("flag");
chanl = find label pame ("chanl");
chan2 = find_label name ("chan2");
magl = find_label name ("magl");
mag2 = find label name ("mag2");
n = find label name ("n");

dsp_run();
dovmload() ;

/**

Name: do_fft
Called By: get_character

Description: This function tells the DSP to perform a
FFT, waits for the FFT to be performed, then
loads the magnitudes of the desired bin numbers
of the FFT into the variables valuel and
value2. These magnitudes are then converted
into 1's or 0's depending on whether or not
they exceed a certain pre-specified threshold.

Communication with the DSP is mediated by the
variable flag. A flag of 1 tells the DSP to
perforn a FFT. A flag of 0 tells the PC that
the DSP has finished doing the FFT.

Globals Changed: valuel, value2

**/

void do_fft()

{
int peak value, channel;

dsp_dl_int (flag,l);
while(dsp_up_int(flag));
valuel = dsp_up_int (magl) ;
value2 = dsp_up_int (wag2) ;
dsp_dl_int (flag,l);

if (valuel > peak_threshl)

valuel = 0;
else
valuel = 1;
if (value2 > peak_thresh2)
value? = 0;
else
value2 = 1;
}
/**** Joke Kk % % dodkcdedede et ok ke ke dhk kK Rk gk K '**/

/**
Name: out_char

Called By: process_on

Description: This function determines the identity of an
array of 1's and 2's representing a Morse
code character (the array is padded with
zeros). The determination is done by converting
the 1's and 2's in the array to a base 10 number,
finding the corresponding alphanumeric character by
entering the base 10 number in a search tree, and
printing the character to the monitor.

Globals Changed: The x-location that is passed to out_char
(either xlocl or xloc2) is modified.

void out_char (int letter[], int *xloc, int yloc)

1
int letout=0, done=l;
int aa,bb,cc,dd,ee,ff,gg, hh,ii,jj, Kk, 11,0m,00,00,0D,
qq,rr,ss,tt,un, v, Wi, X%, Y, 22, quest , period, comma, SK, AR, DN, BT,
nl,n2,n3,n4,n5,n6,n7,n8,n9,n0;

aa=T; bb=41; cc=b0; dd=14; ee=l; £f=49; gg=17; hh=40; ii=4; jj=19;
kk=23; 11=43; m=8; nn=5; 00=26; pp=52; q¢=T1; rr=16; ss=13; tt=2;
w=22; vw=67; ww=25; xx=68; yy=T7; zz=44; n0=242; nl=241; n2=238;
n3=229; nd=202; n5=121; n6=122; n7=125; n8=134; n9%=161; coma=692;
quest=400; period=637; AR=151; SK=634; DN=149; BT=203;

57

/* Convert letter to an integer value */

while (done = 1)
{
if (letter[0]=0) break:
else if (letter[0]==1) letout = 1;
else letout = 2;

if (letter[1]==0) break;
else if (letter[1]=1) letout = letout + 3;
else letout = letout + 6;

if (letter[2]=0) break;
else if (letter[2]==1) letout = letout + 9;
else letout = letout + 18;

if (letter[3]==0) break;
else if (letter[3]=1) letout = letout + 27;
else letout = letout + 54;

if (letter[4]=0) break;
else if (letter[4]==1) letout = letout + 81;
else letout = letout + 162;

if (letter[5]==0) break;
else if (letter{5]=1) letout = letout + 243;
else letout = letout + 436;

if (letter[6]==0) break;
else if (letter{6]=1) letout = letout + 729;
else letout = letout + 1458;

done = 0;
}

if (do 1)
window(1,4,80,12);

else
window(1,13,80,21);

gotoxy (*xloc, yloc) ;
/* Find What the Character is and Qutput it */

if (letout<=pp)
if (letout(=gg)
if (letout<=nn)
if (letout<=ee) |
if (letout==ee) putchar('e’);
else putchar(' '); 1}
else {
if (letout==tt) putchar('t’);
else if (letout==ii) putchar('i');
else if (letout==mn) putchar('n'); }
else
if (letout<=ss) {
if (letout==aa) putchar('a');
else if (letout=ss) putchar('s');
else if (letout==mm) putchar('m'});}
else {
if (letout==dd) putchar('d');

else if (letout==rr) putchar('r');
else if (letout==gg) putchar(‘g');}
else
if (letout<=hh)
if (letout<=kk) {
if (letout==uu) putchar('u');
else putchar('k');}
else f{
if (letout==00) putchar('o');
else if (letout=hh) putchar('h');
else if (letout=ww) putchar('vw');}
else
if (letout<(=zz) {
if (letout==11) putchar('l’);
else if (letout==bb) putchar('d’);
else if (letout==2z) putchar('z’);}
else {
if (letout==cc) putchar('c');
else if (letout==ff) putchar('f’);
else if (letout=pp) putchar('p’);}
else
if (letout(=AR)
if (letout<=ij)
if (letout<=xx)
S|
if (letout=xx) putchar('x’);
else putchar('v');
}

else
{
if (letout==qq) putchar('q');
else if (letout=yy) putchar('y'};
else if (letout==jj) putchar('j');
}
else

if (letout<=n7)
{
if (letout==n7) putchar('7');
else if (letout=n5) putchar('5');
else if (letout=m6) putchar('6');
}

{

if (letout==n8) putchar('8');
else if (letout=IN) putchar('/')
else if (letout=RAR) putchar('+’)
}

else

else
if (letout<=n2)
if (letout<(=n4)
{
if (letout==n9) putchar('9');
else putchar('4');
}

{

if (letout==n3) putchar('3');
else if (letout=mn2) putchar('2');
else if (letout==BT) putchar('-');
}

else

else

59

if (letout<=quest)
: {
if (letout==nl) putchar('1l’);
else if (letout=m0) putchar('0');
else if (letout==est) putchar('?');
}

{

if (letout==period) putchar('.');
else if (letout==comma) putchar(',');
else if (letout==SK) putchar('#');

}

else

/** update the position of the text on the screen **/

*3loc = *xloc + 1;
window(1,1,80,25);

} /* End Out_Char */

Name: new_line_check

Called By: process on

Description: This function determines if it is necessary to
start a new line in the output window. The
function also clears a line that is ahead of
the current line.

Globals Changed: Both the x and y screen coordinates that are

passed to this function may be changed.

(xlocl, xloc2, ylocl, yloc2)

ek e e e sk ke 3K g o 9 ok ek ok ke e ok s e e ek o e ke ok ek e ok e ke ok ke ke ke e e e e e e o e ke ok ke /
void new_line check(int *xloc, int *yloc)

{

if (do 1)
window(1,4,80,12);

else
window(1,13,80,21);

*xloc = *xloc + 1;
gotoxy (*xloc, *yloc) ;

if (*xloc > 30)

{

if (*yloc < 7)
{
gotoxy (1,*yloct+3) ;
clreol();
gotoxy (*xloc, *yloc) ;
}

{

gotoxy (1,*yloc-7+1) ;
clreol():

gotaxy (*x1loc, *yloc) ;

else

60

}
} 61

if (*xloc > 60)
{
if (*yloc = 9)
gotoxy(1,1);
printf (ll\nll) :
}

*xloc = wherex();
*yloc = wherey();

window(1,1,80,25);
}

/ Fededededede e deafe e de e e e ook ek e ek s ek e e ke ke o ek ek ok vk e e e ke ok ok e o de ek /
/ Fekkkkdekkkdkkdkkdodddedkkkdkdodkdedohkk okt kdokk kg kdok sk dokdoddkdekkkkkkk

Name: setup
Called By: main

Description: This function sets up the user screen and draws
and stores all of the possible menus.

Globals Changed: None

*%: ok e Jo I Je de T g J e v o ke e e e e Fe e K Rk REkKk%k: K sk Jok dedo g e e K X /

void setup()

{
int 1i;

gettext(1,4,80,21,clear_display);
gettext (1,23,80,25,clear_menu);

/* Draw Manual Adjustment Window */

gotoxy(1,1);
putchar (201) ;
for (i=2; i<15; i++)
{
gotoxy(1,i);
putchar (186) ;
}
gotoxy(1,15);
putchar (200} ;
gotoxy(2,1) ;
for (i=1; i¢30; i+)
putchar (205) ;
putchar (187) ;
for (i=2; i<15; i++)
{
gotoxy(31,1i);
putchar (186) ;
}
gotoxy(31,15) ;
putchar(188);
gotaxy(2,15);
for (i=1; i¢30; i)
putchar (205) ;
gotoxy(7,3);
printf ("Change Parameters ");

gotoxy(3,5);

putchar (16) ;

gotoxy(5.5);

printf ("Lowest Intrachar");
gotoxy(5,6);

printf ("Lowest Char_Space");
gotoxy(5,7);

printf ("Lowest WordSpace™);
gotoxy(5,8);

printf ("Lowest Dit");
gotoxy(5,9);

printf ("Lowest Dah");
gotoxy(5,10) ;

printf ("Peak Threshold");
gotaxy(5,11);

printf ("FFT Points");
gotoxy(5,12) ;

printf ("Channel") ;
gotoxy(5,13);

printf ("Quit");

gettext(1,1,31,15,param_menu) ;

/% Draw Main Menu %%/

gotoxy(5,23);

printf ("F ~ Find Channel™);
gotoxy(5,25);

printf ("S — See Durations");
gotoxy (60,23) ;

printf ("G - Go");

gotoxy (60,25) ;

printf ("ESC ~ Exit");

gettext(1,23,80,25,nain_menu);
puttext(1,23,80,25,clear_menu);

/** Draw Go Menu **/

gotoxy(5,23);

printf ("R - Recapture");
gotoxy (60,24) ;

printf ("Q - Q.lit") H
gotoxy(5,24) ;

printf ("A - Auto Adjust");
gotoxy(5,25);

printf ("M - Manual Adjust");

gettext(1,23,80,25,90_menu);

clrser();

/** Draw Main Screen **/

gotoxy(1,22);

for (i=l; i81; i)
putchar (196) ;

gotoxy(1,3);
for (i=1; i<81; i++)

62

putchar (196) ; 63

gotoxy (60,1);
printf ("Revision 9");

puttext (1,23,80,25,main_menu);
gotoxy(1,4);

}

/**/
/***

Name: process_off
Called By: get_character

DESCRIPTION: After a string of samples has been received

from the DSP board indicating that the Morse code signal was

off, the total number of samples in this string is added to

the running total for the current "space". Note that the current
"space" may consist of more than just the current string of "off"
values do to smoothing.

Globals Changed: The total of comsecutive "offs" that are passed
(inbetweenl or inbetween2) is modified.

*/
void process off (int *inbetween, int total)
{
*inbetween = *inbetween + total;
}
Il e ,‘- Lok de vk Ye ik Je i ;;xx-/
/**

Name: process_on;
Called By: get_character
Calis: out_char, new_line check

DESCRIPTION: After a string of "on" samples are

received from the DSP board, process_on determines whether
this string is a dit, a dah, or a glitch. Furthermore, if the
string completes a dit or a dah, process_on checks to see if a
character needs to be printed out and if a new line needs to be
started.

Globals Changed: None other than those passed by address in the

% e e e e e e ok o e *kkk /

void process on(int letter[], int *inbetween, int *1ddah,
int lowest_intrachar, int lowest char, int lowest _word

int *counter, int lowest_dit, int total, int *xloc,
int *yloc, int lowest_dah)

{

int i;

if (total > lowest_dit)
{

if (*inbetween < lowest_intrachar)
*1ddah = *1ddah + *inbetween + total;

else
if (*inbetween < lowest_char)
{
if (*counter > 7)
{
printf (" ERROR ");
out_char (letter, &(*xloc) , *yloc) ;
for (i=1; i <=7T; i+
letter[i-1] = 0;
*counter = 0;
}
else
{
if (*1ddah > lowest_dah)
letter[*counter] = 2;
else
letter [*counter] = 1;
*]1ddah = total;
*counter = *counter + 1;
}
}
else
{
if (*1ddah > lowest_dah)
. letter [*counter] = 2;
else
letter[*counter] = 1;
*1ddah = total;
*counter = 0;
out_char (letter, &(*xloc) ,*yloc) ;
for A=1; 1 <=T; i)
letter[i-1] = O;
if (*inbetween > lowest_word)
{
putchar(' *);
new_line check(&(*xloc),&(*yloc));
}
}
*inbetween = 0;
I
else

*inbetween = *inbetween + total;
}

/ Fedodeddo ko dodedod e d dede dod g deo ok e de sk e do ko de ek dedk ko gk Kok ke ke kok ek ok ke ok /
/ ek ek Kook ok ek dodk ek ke dk ok ek ek ook ke ok ko ok ok ok ke ok ko ok e ek ok

Name: get_character
Called By: go_handler
Calls: do _fft, process_on, process off

DESCRIPTION: This function checks to see if the user wants to
manually adjust the operating parameters or stop the program

from translating Morse code. If not, get_character receives

samples and if they are all of the same value, increments a counter.
When a change in the sample value (1 to 0 or 0 to 1) is received, the
current counter is sent to process_on or process_off depending

on what the values of the samples in the previously received

64

string were. 65

Globals Changed: do_manual, do_go, do get, valuel, value2,
lastl, last2, totall, total2

Fokdkdkkkkkdokdokkdekddddkdkdokkkdkdkd ki ki Kk dkdokdokkkkkkkiokkkkkkkkk /

void get_character()

{
int key=0;

do_get = 1;
do_£fft();

while (do_get)
{
do_fft();
if (kbhit())
{
key = getch();
if (((key==81) || (key==113)) || ((key==T7) | | (key==109)))
{
do get = 0;
if ((key=281)1{} (key==113))
do_go = 0;
else
do_manual = 1;
}
}
if (valuel != lastl)
{
if (lastl == 0)
{
dol=1;
process_on(letterl, &inbetweenl,&lddahl, lowest_intracharl,
lowest_charl,lowest_wordl,&letentl, lowest_ditl,
totall, &xlocl, &ylocl, lowest_dahl);
totall = 1;
lastl = valuel;
do1=0;
}
else
{
process_off (&inbetweeni, totall);
totall = 1;
lastl = valuel;
}
}
else
totall = totall + 1;

if (value2 != last2)
{
if (last2 = 0)
{
do2=1;
process_on(letter2, &inbetween2,&lddah2, lowest_intrachar2,
lowest_char2,lowest_word2, &letent2, lowest_dit2,
total2,&xloc2,&yloc2, lowest_dah2);
total2 = 1;
last2 = value2;

‘}1°-—2 =0 66
else
{
process off (§&inbetween2, total2);
total2 = 1;
last2 = value2;
}
}
else
total2 = total2 + 1;
}
}

/ dodedk etk kkkdokkdkkdkdkdckkkdkkkdhkkdkkikdkkkdkkikkk sk itk kkkkkkkk /
/ deddededodeddokkkkkdkkkkkkkdk ko kkk hdkkkkkdkkkkkkddkkkkkkkdkkikkkkkkkk

Name: manual_handler
Called By: go_handler

DESCRIPTION: This procedure provides the user interface
necessary to manually change the threshold parameters used

by the program to determine the element durations, the

number of FFT points to use and the peak thresholds used

to determine if a signal is on or off. The manual handler allows
the user to use the cursor key to select the parameter to

be changed, then enter the new value.

Globals Changed: do_manual, and those that are passed by
address to the procedure.
ek de Rk Fe gk Je ik de i g ke Tk K Fek e de ke kR KKk ek e Jk g ke de Je ok '_.‘-.uu‘;/

void manual handler (int *lowest_intrachar,int *lowest char,int *lowest_word,
int *lowest_dit,int *lowest_dah,int *peak
thresh,
int *channel)
{
int orig _x, orig y, posx, posy, temp=0, key=0;

orig_x = wherex();
orig_y = wherey();

gotoxy(1,1); _
printf (u u) :

gettext (WUX,WUY, WLX,WLY, save_pmenu) ;
puttext (WUX, WUY, WLX, WLY, param_menu) ;
window (WUX, WUY, WLX, WLY) ;

gotoxy(25,5); printf ("%4d",*1lowest_intrachar);
gotoxy(25,6); printf("%4d",*lowest_char);
gotoxy(25,7); printf("%4d",*lowest_word) ;
gotoxy(25,8); printf("%4d", *lowest_dit);
gotoxy(25,9); printf("%4d", *lowest_dah);
gotoxy(25,10); printf ("%44",*peak_thresh);
gotoxy(25,11) ; printf ("%4d",ffipts);
gotoxy(25,12) ; printf ("%4d",*chamnel) ;

gotaxy(3,5) ;

while (do_manual)
{

posy = wherey();

gotoxy (3,posy) ;
key = getch();
if (key=13)
{
if (posy==13)
key = 81;
else
{
posx = wherex();
gotoxy (25, posy) ;
scanf ("%4d", &temp) ; -
if (posy==5)
*Jowest_intrachar = temp;
else if (posy==6)

*lowest_char = temp;
else if (posy==7)
*1lowest_word = temp;
else if (posy==38)
*lowest_dit = temp;
else if (posy==9)
*lowest_dah = temp;
else if (posy==10)
*peak_thresh = temp;
else if (posy==11)
{
fftpts = temp;
download() ;
}
else if (posy==12)
{
*channel = temp;
dovmload() ;
}
gotoxy (25, posy) ;
printf ("%4d", temp) ;
s};otmcy(posx,posy);
}
if ((key==81) 1|} (key==113))
do_manual = 0;
if ((key=72))
{
putchar(' ');
if (posy==5)
gotoxy(3,13);
else
gotaxy (3,posy-1) ;
putchar (16) ;
}
if ((key==80))
{
putchar(' ');
if (posy==13)
gotoxy(3,5) ;

gotoxy (3, posytl) ;
putchar (16) ;
}
}
window(1,1,80,25);

else

67

puttext (WX, WUY, WLX, WLY, save_pmenu) ;
puttext (MUX, MUY, MLX, MLY, go_menu) ;

gotoxy (orig x,orig_v);

/ e e e e Ly X St nde desbeseode e e e sbe e o e e ;/
/***

Name: see_handler

Called By: This procedure has not been integrated into the
present program. {(called by main)

Description: This procedure allows the user to see the
magnitudes and the durations of samples on a specified chamnel.
This is a diagnostic tool used to set the operating parameters
manually if the program cannot determine them well enough
itself.

**/

void see handler ()
{
int key=0;

puttext (SUX, SUY, SLX,SLY,clear display);
puttext (MUX, MUY, MLX, MLY, clear menu);
gotoxy (60,24) ;

printf ("Q - Ql!it");

gotoxy(35,12) ;

printf ("See Magnitudes and Durations");
while (do_see)

{

gotoxy (60,25) ;

key = getch();

if ((key==81)!! (key==113))

do _see = 0;

}
puttext (SUX, SUY, SLX, SLY,clear_display);
puttext (MUX, MUY, MLX, MLY . main_menu) ;

}

/**/
/***

Name: go_handler

Called By: main

Calls: manual_handler, get_character

DESCRIPTION: This procedure controls the user interface
for the Go - Menu. It is entered when the user selects Go
at the main menu and is exited when the user selects Quit.

The user can choose to vary the operating parameters. Default
operation is to translate Morse code and print it to the

screen.
Globals Changed: None
***/

void go_handler()
{

68

int i, posy, posx, choice; 69

puttext (SUX, SUY, SLX, SLY, clear display);
puttext (MUX, MUY, MLX, MLY,go_menu) ;

while (do_go)
{
if (do_manual==1)
{
gotoxy(1,1) ;
printf ("Which Channel? ");
scanf ("%d", &choice) ;
if (choice = 1)
manual _handler (dowest_intracharl,&lowest_charl, &lowest _wordl,
&lowest_ditl,&lowest dahl,&peak threshl
,&channell) ;
else
manual_handler (&lowest_intrachar2, &lowest_char2,&lowest_word2,
&lowest_dit2,&lowest_dah2,&peak_thresh2
&channel?2) ;
}
get_character();
}
puttext (MUX, MUY, MLX, MLY , main_menu) ;
}

J e Ty
ek e Main Program *kkikkksckikkkkkkkkikkick

main ()

{
int key:

do go = 0;
do_see = 0;
do_find = 0;
do_manual = 0;
do_recap = 0;

clrser();

wpn = 13;
fftpts = 32;

/** Initialize Parameters **/
/** Wote that this is done because the auto
startup is not functioning properly *kf

channell = 3;
peak_threshl = 1500;
lowest_dahl = 16;
lowest_ditl = 1;
lowest_intracharl = 1;
lowest _charl = 17;
lowest_wordl = 41;

channel2 = 11;
peak_thresh2 = 1500;
lowest_dah2 = 12;
lowest_dit2 = 2;

lowest_intrachar2 = 2;
lowest_char2 = 12;
lowest_word2 = 30;

/** Initialize Window-Relative Screen Coordinates

xlocl = 1;
xloc2 = 1;
ylocl = 1;
vloc2 = 1;

default_addr();
ctrl_break();

init();
dsp dl_int (flag,l);
setup() ;

/** Begin execution from the main menu *x/
/** if ESC is pressed, loop is terminated **/

while(1)
{
if (kbhit())
{
key = getch();
if (key==2T)
exit_routine();
if ((key=T1) || (key==103))
{
do_go = 1;
go_handler();
}
if ((key==83){! (key==115))
{
do_see = 1;
see_handler();

**/

70

APPENDIX D: CODE_DSP.C

W HAS AW FFYT

Bean REQUVESYED
2

Yes

A

GET &
SUFFER. of DRER

bo FFT

STORE DRTHR 1O
THE VARIAGRLES THAT
cong.C LsSes

Figure D-3: Flowchart for Code_DSP.C

- 71 ——

/***
filename: CODE DSP.C

programger: Jeff McDow

revised: 4-29-91

additions: 5-9-91

original programer Kristjan Jonsson
original filename: CW_DSP.C
date of origin: 5-2-90

Description: This program is run by the AT&T DSP
board. When signaled by the program CODE.EXE, which
is being run by the host computer, CODE_DSP.EXE
will perform an FFT on the samples it receives from
the CODEC; store the magnitudes of the specified
bin_numbers—chanl and chan2; and signal CODE.EXE
to upload these values.

Special Notes: This program must be compiled using the
AT&T DSP compiler.

**/

#include “g:\engrapp\att\dsp32sl\include\io.asm"
#include "g:\engrapp\att\dsp32sl\include\libap.h"

#define MAX 500

[RIhRkRkskdkxkdxkkckk Global Variables *kkkkkkkkikkkkkkkik |

int buffer [MAX], magl, mag2, ph, chanl, chan2, n, m;
float buf [MAX]; '
int flag=0;

/***/
[reddkkkkkkkkkkkikkkkrk MATN PROGRAM *ikkiksckkdckkkkschkkkiik |
/***/
main()

set_ioc(0x547);

set_dauc(0);

while(!flag); /** Wait for signal from code.exe **/
m = (int) log2((float) n); /** When signal is received, **/
/** get ready to do an FFT *% /
while(1) /** Main Loop **/
{ while (!flag); /** Wait for signal from code.exe **/
get_data(); /** Collect a buffer of data from the CODEC **/
£t (n,m,buf) ; /** do an n point FFT on data in buf **/
ritomp(); /** convert from real-imaginary pairs,**/
/** to magnitudes *%x/
magl = buffer[chanl]; /** store magnitude of chanl **/
mag2 = buffer[chan2];
flag = 0; /** signal code.exe that FFT is done **/

}
}

/***

FUNCTION DEFINITIONS

72

***/
/***

Name: get_data
Called By: main

Description: This function gets a buffer of data from the

CODEC and stores it in buf.
***/

get_data ()

{
register int i;
register float *p;

p = buf;
i=n;

while (i—)
*pH = ic_ibuf();
*pit = 0;
/***
ek e ek e e g v e e e e e ok ok vk ok o vk ok e o ke ke sk o e ke ke e e ok ok ek ke ok ok ke ke ke e ok

Name: ritomp
Called By: main

Description: This function converts the data in buf
(after an FFT has been performed on it) from real-imaginary

pairs into a series of magnitudes.
***/

ritowp ()

{ register int i, *p2;
register float *pl, real, imag;

pl = buf;

p2 = buffer;

i=n;

while (i—)
{
real = *plH;
imag = *pl++;

*p2++ = (int) sqrt(real*real + imag*imag);
}
}

/***/

73

APPENDIX E

SYSTEM SPECIFICATIONS

Jp— 74 Jp—

APPENDIX E:

SYSTEM SPECIFICATIONS: PHASE-LOCK LOOP SYSTEM

HARDWARE

Description of Operation:

Schematic: See pages 30, 31

Components Used:

Note:

Integrated Circuits

See pages 2,

Part

Quantity

LS244 Octal Buffer

1.S245 Octal Bus Transceiver

LS85 4-Bit Comparator
LS138 3 to 8 Decoder

LS00 Quad 2-Input NAND
LS04 Hex Inverters

LS08 Quad 2-Input AND
LS541 Octal Buffer

1.S155 Dual 2 to 4 Decoder
L.S373 Octal D Latch

LM567 Tone Decoder

Other Parts

Part

e g o T S XY

Quantity

JDR PR—~2 Interface Card
4.7 K-Ohm Resistor

100 Ohm Resistor

50 K-Ohm Potentiometer
0.01 uF Ceramic Capacitor
0.05 uF Ceramic Capacitor

10 uF Tantalum Capacitor (15-25 V)

0.1 uF Tantalum Capacitor
2.2 uF Tantalum Capacitor
Jumbo Green LED

Speaker Jack

PR POWNDKER R

System requires an IBM-compatible personal computer.

- 75 —-

SOFTWARE
Name of Executable File: MORSE.EXE
Size of Executable File: 31503 bytes

Listing of Source File: See pages 45 -~ 52

PERFORMANCE

Maximum Translation Speed: 40 WPM on an 8088 IBM PC

SPECIFICATIONS: AT&T DSP SYSTEM

HARDWARE
AT&T DSP32 Floating Point Digital Signal Processor

8-bit CODEC Sampling at 8 kHz for Data Acquisition

SOFTWARE
DSP-Based Program: CODE_DSP.C
Size of Executable File: 10596 bytes
Listing of Source File: See pages 72-73
PC-Based Program: CODE.C
Size of Executable File: 88470 bytes

Listing of Source File: See pages 54 - 70

PERFORMANCE
Maximum Translation Speed: 70 WPM with 75% Accuracy
60 WPM with 100% Accuracy

Note: Speed measurements were made on a 80386 PC

p—p— '76 —_—

APPENDIX F

FUTURE ADDITIONS

—_ 7] =

