A Simple Introduction to Kalman Filter

Duy-Ky Nguyen, PhD 2002-Nov-22
© All Rights Reserved

1. Random Variable

1.1. Probability Axioms
Given an event E in a sample space S which is either finite with N elements or countaby infinite with
N = oo elements, then we can write

S E( i E, )
and a quality P(E,), called the probability of event E,, is defined such that
1.0<P(E)<I,

2. ZP(E =

3. Additivity P(E, U E,)= P(E,)+ P(E,), where E, and E, are mutually exclusive, ie E,E, =&

1.2. Conditional Probability
The conditional probability of an event 4 assuming that B has occurred, defined as

P(4nB)=P(4B)P(B
For independent events, we have
P(4|B)= P(4)
SO
P(ANB)=P(4) P(B)

1.3. Expectation
Expectation, also known as average or mean, is defined as
_ 1<
X = E(x): pn= <x> = ;in
i=l

Recursive expectation
1 n+l

H’Hl:_lz i_n ( n+1+zxj_ Yo M,

n+143 n+1

1.4. Variance and Deviation
Variance is a measure of variation around the mean and defined as

o = E(x—p) =((x~n)) = var(x) = Elx - E@J = (x~ () )

and Deviation is the square root of Variance, ie. G
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1.5. Covariance

Covariance provides a measure of how strong relation between 2 variables, and defined as

cov(xl.,xj)= <(xi —ui)(xj —pj)> = <xl.xj> —<xl.><xj>

as

<(xi —H )(x_/ —H, >> = <xix.f T, =~ X, = u].xl.> = <xl.x].> THH; — “i<x.f> —H; <xl.>

For independent variables

<xix].> = <xl.><xj>

so covariance of independent variables equals to zero, as expected.

Covariance of the same variable is its variance

COV(xi’xi) = <(x - Hz‘)(x —H )> = <(x - “i)2> = Var(x)

For 2 variables, the covariance is related to the variance by

var(e+ y)=((e—p +y -, P = (-, + (-, F 420 )y -, )) = var(x)+ var(y) + 2cov(x, )

For 2 independent variable
Var(x + y) = Var(x) + Var(y)

2. Derivation of Kalman Gain

Discrete time linear systems with noise are presented in the state equation below

x,;=ax,  tbu,+w,

and its measurable output, also with noise
Yy, =hx, +v,

Because noises are unknown, so we need to define 2 new noise-free states

X, : priori state as predictor

X, : posteriori state as corrector
we then have predicted estimate system equation (without noises)

X;=ax;,  +bu,
y;=hx,
Based on priori estimate, we have a corrected estimate below
X=Xt K(yj - y_,)
where
(y i )7j) : known as residual

K is Kalman gain to be determined to minimize error variance below

E’j =X, —fj =X, —[)?j +K(yj —)7j)J=xj - X, —K(hxj +v, —h)_cj):(l—hK)(xj —)_cj)—va

¢ =x,-%,=(1-hKe, - Kv,

J
where

Q|

;=X T

(1)

(2)

€)
(4)

()

(6)

(7)
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S0 its variance is
5, =E@)= E[1-nK e, - kv, | = E|(1- ik &> + K =22 Kv, (1 hK )
P, =E@)=(1-hKYp,+ KR ®)
where
E(Ejvj): E(EJ)E(vj): 0 :as v, uncorrelated to x, and E(vj): 0
p.=F (Ejz ) : variance of priori error e,, known as priori covariance

R=E (vf) : variance of noise at measured output

Remark 1
By Kalman, and for reason of mutual interaction, we have used priori and posteriori in the same equation, e.qg.

X;and X, | in Eq.(3), ¥, and X, in Eq.(4), X; and X; in Eq.(5).

Eq.(8) gives
Pi_o(hk ~1)ip, + 2RK o5, + R)K - iip |
K J J J
equating to 0 to minimize the estimate error, and the optimal Kalman gain K is given below
P ©)
' WP, +R

Note we change K'to K as it’s varied with j. We will use Eq.(9) to eliminate R in Eq.(8). So Eq.(9) is rewritten

as
R=@—h2—
K,

J J

P, (1-7K)) (10)

Substituting into Eq.(8) after changing K to K;
p;= E(Ejz): (l_th)zl_’j +thﬁj(1_th): l_’j(l —th)(l—th + th)
p,=E@)=p,1-ik,) (1)

However, it’s pointed out by Peter Joseph that Eq.(8) is numerically stable, while its simplified Eq.(11) is not
due to round-off computation

We next to compute priori covariance

3. Derivation of Priori Covariance
By Egs.(1) & (3), the priori covariance is given by
D= E(Ejz)zE(xj —)?j)z = E[(axj_l +bu, +wj)—(a)~cj_l +buj)]2 =E(an_l +wj)Z = ( W 4202w, )
p,=a’p, +0 (12)
where
(Nj W, ) ( ) ( 4):0 :as w, uncorrelated to x;, and E(wj):O
D —E( ) variance of error e, |,

O=FE ( 2) variance of noise at input
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4. Scalar Kalman Filter Algorithm

System equations

{xi =ax;  +bu;+w, E(wf): 0

y,=hx;+v,, E(vz)zR
Init State

Xo» Py
Predictor updates (Priori)

Corrector updates (Poteriori)

;=

h’D,+R
E(gl?)z (l_hK.i )2771 +K.12'R =D, (1 _th)

X; =X, +Kj(y./ _h’_cj)

~

p; =

5. Vector Kalman Filter Algorithm

System equations

_ T\)_ QR XN
{xijjl+Buj+wj, E(ijj)—Qe.R

yj:HX./-'i'Vj, E(V_/V;):Remmxm

Init State
iO’ ﬁ0
Predictor updates (Priori)
P =A j_lAT +Q
X, = AX ;. +Bu

Corrector updates (Posteriori)

P,

J J

X, =X;+K ~(y,- _Hij)
where

; ¥y, v, eR™ A QRP, eR™; B,u, K, eR"™; HeR™
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6. Kalman Filter Examples

For this paper to be self-contained, I’ll use my approximate discretization, An accurate discretization can be
found in Ref[1].

6.1. Scalar Kalman filter
Estimate a scalar constant x, a voltage for example. Let’s assume that we have the ability to take measurements
of the constant, but the measurements are corrupted by a 0.1 volt RMS white measurement noise, thus

R=0.1=0.01

The scalar euqations describing this situation are
X =X, +w,
for the system and
Yy, =x;+v,
for the measurement, where
E(v,)=0, E()=R=0.01

Prersuming a very small process variance, we let £ (wf ) =0 =107, thus we have a computational algorithm

below
e System equations
X =X+ W,
Yp=Xty,

e Predictor equations (Priori)
p,=p.,+0, 0=107

e Corrector equations (Posteriori)

kK =—P_ r-oo01

a p;+R
p, :(I_Kj)zl_’j +K5R:51(1_Kj)

%=%+K,(y, %)
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State with Exact and Est elements for Constant

State, x

Remark 2
Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy

measurement.
6.2. Scalar Kalman filter formulation for RC circuit
We consider the voltage measurement at the output of the RC circuit in the figure below, using a high-

impedance voltmeter. Because these measurements are noisy, and also the component values imprecise
(£ AR, £ AC), we require an improved estimate of the output voltage. For this purpose we want to use a

Kalman filter for which we develop the system and measurement models as follows.

(e)=2x(e)+v(0)

+

L, T R C - Tx(t) v(t): noise

(£AR) (+AC)

The Kirchoff nodal equation is
ul)=20) , o
R dt
By definition of derivative, with sampling 7, we have

or
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Assuming the measurement to have gain of 2, the circuit elements to have values R =3.3kQ2, C =1000pF and
sampling period 7 = 0.1s, the input to be step function of 300uA4, our signal and measurement equations are
X, =0.97x, +0.03+w,

Yy, =X, +v,
Assuming the model parameter uncertainty £ (w]2 ) =0 =10", and the measurement error £ (vjz ) =R =0.01, thus
we have a computational algorithm below
e System equations
X =097x, +0.03+w,

Yy =X 1y,

e Predictor equations (Priori)
D;= azﬁj_l +0, a=097, 0=0.01

X, =a%,, +0.03

e Corrector equations (Posteriori)

__p
J hzﬁj + R 2
p;= (1 —hK, )21_71‘ +KiR=p, (1 - th)

h=1, R=0.01

X; =X, +K(yj _hfj)

State with Exact and Est elements for RC circuit

State, x

Remark 3
Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy

measurement.
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6.3. Vector Kalman filter formulation for RLC circuit

We consider a design of an estimator for a second-order system consisting of R, L, C elements
L(£AL)

REAR) o ()= x(t)+v(r)

di dx
u(t)=Ri+ p +x(t), i=C %
SO
2
u(t)zRC%+LCd f+x(t)
or

X
dt* Ldt LC
Assuming R =5kQ, L =2.5H, and C = 0.1uF , we have

d’x Rdx 1 () 1 (t)

2
d f+2x103%+4x106x(t)= 4%10%u(t)
t t
If we scale time from seconds to milliseconds, ie.  — 107 ¢, we obtain
d*x dx
——+2x10’ +4x10°x(t) = 4x10°u(t
10~ dt? 107 dt © )
or
d*x dx
+2—+4x(t) = 4ult
To get a state-space form, we let
X, =X, X, = L)
U
and get
dx

—2 4+ 2x, +4x, =4u
dt

thus the state-space equation is
X, =X,
X, =—4x, —2x, +4u

By definition of derivative, with sampling time 7, we have
xl(j+1)_xl(j):Tx2(j) }
xz(j+1)_xz(j): _4Tx1(j)_2Tx2(j)+4T”(j)

or

xl(j+1):x1(j)+Tx2(j) }
xz(j"'l): —4Tx1(j)+(1—2T)x2(j)+4Tu(j)
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We thus have system equation below
X, =AX; +Bu;, +w,
y; =HXx, +v,
where, assuming 7 = 0.1mS

A{—(I)A g;} B:[oﬂ’ Wf:m}’ H=[t o]

Assuming the model parameter uncertainty £ (wf ) =(0=10"", and the measurement error E (vf ) =R =0.01, thus
we have a computational algorithm below

e System equations

e Predictor equations (Priori)

e Corrector equations (Posteriori)
K, ~Bu (P )’
P,=(1-K H)P,(I-K ,H] +K RK’ = (I-K H)P,

X, =%, +K,(y,-HX,)
where
xj,wjeiRM; Y,V eR; A,Q,R,PjeiRM; B,uj,KjeiRM' HeR™

b

State with Exact and Est elements for RLC circuit

—— Meas

State, x

Remark 4

Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy
measurement.
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