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1. Random Variable 
1.1. Probability Axioms 
Given an event E in a sample space S which is either finite with N elements or countaby infinite with 

elements, then we can write ∞=N
 ( )i

N
i ES 1=≡ U   

and a quality , called the probability of event , is defined such that ( iEP )
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3. Additivity , where  and  are mutually exclusive, ie ( ) ( ) ( 2121 EPEPEEP +=∪ 1E 2E ∅=21 EE I  
 
1.2. Conditional Probability 
The conditional probability of an event A assuming that B has occurred, defined as 
 ( ) ( ) ( )BPBAPBAP =∩   
For independent events, we have 
 ( ) ( )APBAP =   
so 
 ( ) ( ) ( )BPAPBAP =∩   
 
1.3. Expectation 
Expectation, also known as average or mean, is defined as 
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Recursive expectation 
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1.4. Variance and Deviation 
Variance is a measure of variation around the mean and defined as 
 ( ) ( ) ( ) ( )[ ] ( )22222 var xxxExExxxE −=−==µ−=µ−=σ   

and Deviation is the square root of Variance, ie. σ  
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1.5. Covariance 
Covariance provides a measure of how strong relation between 2 variables, and defined as 
 ( ) ( )( ) jijijjiiji xxxxxxxx −=µ−µ−=,cov   
as 
 ( )( ) ijjijijiijjijijijjii xxxxxxxxxx µ−µ−µµ+=µ−µ−µµ+=µ−µ−   
For independent variables 
 jiji xxxx =   
so covariance of independent variables equals to zero, as expected. 
 
Covariance of the same variable is its variance 
 ( ) ( )( ) ( ) ( )xxxxxx iiiii var,cov 2 =µ−=µ−µ−=   

 
For 2 variables, the covariance is related to the variance by 
 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )yxyxyxyxyxyx yxyxyx ,cov2varvar2var 222 ++=µ−µ−+µ−+µ−=µ−+µ−=+   

 
For 2 independent variable 
 ( ) ( ) ( )yxyx varvarvar +=+   
 

2. Derivation of Kalman Gain 
Discrete time linear systems with noise are presented in the state equation below 
 jjjj wubxax ++= − 1  (1) 
and its measurable output, also with noise 
 jjj vxhy +=  (2) 
 
Because noises are unknown, so we need to define 2 new noise-free states 

jx  : priori state as predictor 
~

jx  : posteriori state as corrector 
we then have predicted estimate system equation (without noises) 
 jjj ubxax += −1

~  (3) 
 jj xhy =~  (4) 
Based on priori estimate, we have a corrected estimate below  
 ( )jjjj yyKxx ~~ −+=  (5) 
where  
 ( )jj yy ~−  : known as residual 
 K is Kalman gain to be determined to minimize error variance below 
 ( )[ ] ( ) ( )( ) jjjjjjjjjjjjjjj KvxxhKxhvhxKxxyyKxxxxe −−−=−+−−=−+−=−= 1~~~   
 ( ) jjjjj KvehKxxe −−=−= 1~~  (6) 
where 
 jjj xxe −=  (7) 
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so its variance is 
 ( ) ( )[ ] ( ) ( )[ ]hKKvevKehKEKvehKEeEp jjjjjjjj −−+−=−−== 1211~~ 222222   

 ( ) ( ) RKphKeEp jjj
222 1~~ +−==  (8) 

where 
 ( ) ( ) ( ) 0== jjjj vEeEveE  : as v  uncorrelated to  and j jx ( ) 0=jvE  

 ( )2
jj eEp =  : variance of priori error je , known as priori covariance 

 ( )2
jvER =  : variance of noise at measured output 

 
Remark 1 
By Kalman, and for reason of mutual interaction, we have used priori and posteriori in the same equation,  e.g. 

1
~ and −jj xx  in Eq.(3), jj xy  and ~  in Eq.(4), jj xx  and ~  in Eq.(5). 

 
Eq.(8) gives 

 ( ) ( )[ ]jjj
j phKRphRKphhK

K
p

−+=+−=
∂
∂ 22212   

equating to 0 to minimize the estimate error, and the optimal Kalman gain K is given below 

 
Rph

ph
K

j

j
j +

= 2  (9) 

 
Note we change K to as it’s varied with j. We will use Eq.(9) to eliminate R in Eq.(8). So Eq.(9) is rewritten 
as 

jK

 ( j
j

j
j

j

j hK
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ph

ph
K
ph

R −=−= 12 )
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 (10) 

 
Substituting into Eq.(8) after changing K to K  
 ( ) ( ) ( ) ( )( )jjjjjjjjjjj hKhKhKphKphKphKeEp +−−=−+−== 1111~~ 22   

 ( ) ( )jjjj hKpeEp −== 1~~ 2  (11) 
 
However, it’s pointed out by Peter Joseph that Eq.(8) is  numerically stable, while its simplified Eq.(11) is not 
due to round-off computation 
 
We next to compute priori covariance 
 

3. Derivation of Priori Covariance 
By Eqs.(1) & (3), the priori covariance is given by 
 ( ) ( ) ( ) ( )[ ] ( ) ( )jjjjjjjjjjjjjjj weaweaEweaEubxawubxaExxEeEp 1

22
1

22
1

2
11

22 ~2~~~
−−−−− ++=+=+−++=−==   

 Qpap jj += −1
2 ~  (12) 

where 
 ( ) ( ) ( ) 0~~

11 == −− jjjj wEeEweE  : as  uncorrelated to , and jw jx ( ) 0=jwE  

 ( )2
11

~~
−− = jj eEp  : variance of error 1−je , 

 ( )2
jwEQ =  : variance of noise at input 
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4. Scalar Kalman Filter Algorithm 
System equations 
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 00
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Predictor updates (Priori) 
 Qpap jj += −1

2 ~   
 jjj ubxax += −1

~   
 
Corrector updates (Poteriori) 

 
Rph
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= 2   

 ( ) ( ) ( )jjjjjjj hKpRKphKeEp −=+−== 11~~ 222   

 ( )jjjjj xhyKxx −+=~   
 

5. Vector Kalman Filter Algorithm 
System equations 
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Init State 
 00

~,~ Px   
Predictor updates (Priori) 
 QAPAP += −

T
jj 1

~   
 jjj uBxAx += −1

~   
 
Corrector updates (Posteriori) 
 ( ) 1−

+= RHPHHPK T
j

T
jj   

 ( ) ( ) ( ) ( ) jj
T
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jjj E PHKIRKKHKIPHKIeeP −=+−−== ~~~   

 ( )jjjjj xHyKxx −+=~   
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6. Kalman Filter Examples 
 

For this paper to be self-contained, I’ll use my approximate discretization, An accurate discretization can be 
found in Ref[1]. 

 

6.1. Scalar Kalman filter 
Estimate a scalar constant x¸ a voltage for example.  Let’s assume that we have the ability to take measurements 
of the constant, but the measurements are corrupted by a 0.1 volt RMS white measurement noise, thus 

 01.01.0 2 ==R
 
 The scalar euqations describing this situation are 
 jjj wxx +=+1   
for the system and 
 jjj vxy +=   
for the measurement, where 
 ( ) ( ) 01.0,0 2 === RvEvE jj   
 
Prersuming a very small process variance, we let ( ) 52 10−== QwE j , thus we have a computational algorithm 
below 

• System equations 
 jjj wxx +=+1   
 jjj vxy +=   

• Predictor equations (Priori) 
 5

1 10,~ −
− =+= QQpp jj   

 1
~

−= jj xx   
• Corrector equations (Posteriori) 

 01.0, =
+

= R
Rp

p
K

j

j
j   

 ( ) ( )jjjjjj KpRKpKp −=+−= 11~ 22   

 ( )jjjjj xyKxx −+=~   
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Remark 2 
Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy 
measurement. 
 
6.2. Scalar Kalman filter formulation for RC circuit 
 
We consider the voltage measurement at the output of the RC circuit in the figure below, using a high-
impedance voltmeter. Because these measurements are noisy, and also the component values imprecise 
( ), we require an improved estimate of the output voltage. For this purpose we want to use a 
Kalman filter for which we develop the system and measurement models as follows. 

CR ∆±∆± ,

 

( )R
R
∆± ( )C

C
∆±( )tu

Iin

= ( )tx
( ) noise:tv

+
( ) ( ) ( )tvtxty += 2

 
 
The Kirchoff nodal equation is 

 ( ) ( )
dt
dxC

R
txtu +=   

By definition of derivative, with sampling T¸we have 

 
T

xx
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 −=+ 11   
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Assuming the measurement to have gain of 2, the circuit elements to have values FCkR µ=Ω= 1000,3.3  and 
sampling period T , the input to be step function of s1.0= Aµ300 , our signal and measurement equations are 
 jkj wxx ++=+ 03.097.01   
 jjj vxy +=   
 
Assuming the model parameter uncertainty ( ) 42 10−== QwE j , and the measurement error ( ) 01.02 == RvE j , thus 
we have a computational algorithm below 
 

• System equations 
 jkj wxx ++=+ 03.097.01   
 jjj vxy +=   
 

• Predictor equations (Priori) 
 01.0,97.0,~

1
2 ==+= − QaQpap jj   

 03.0~
1 += −jj xax   

 
• Corrector equations (Posteriori) 

 01.0,1,2 ==
+

= Rh
Rph

ph
K

j

j
j   

 ( ) ( )jjjjjj hKpRKphKp −=+−= 11~ 22   

 ( )jjjj xhyKxx −+=~   
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Remark 3 
Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy 
measurement. 
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6.3. Vector Kalman filter formulation for RLC circuit 
 
We consider a design of an estimator for a second-order system consisting of R, L, C elements 

( )RR ∆±

( )C
C
∆±( )tu

Vin

= ( )tx
( ) noise:tv

+
( ) ( ) ( )tvtxty +=

( )LL ∆±

dt
dxCi =

 
The loop equation for this circuit is 

 ( ) ( )
dt
dxCitx

dt
diLRitu =++= ,   

so 

 ( ) ( )tx
dt

xdLC
dt
dxRCtu ++= 2

2

  

or 

 ( ) ( )tu
LC

tx
LCdt

dx
L
R

dt
xd 11
2

2

=++   

Assuming , we have FCHLkR µ==Ω= 1.0and,5.2,5

 ( ) ( )tutx
dt
dx

dt
xd 663
2

2

104104102 ×=×+×+   

If we scale time from seconds to milliseconds, ie. t , we obtain t310−→

 ( ) ( )tutx
dt

dx
dt
xd 66

3
3

26

2

104104
10

102
10

×=×+×+ −−   

or 

 ( ) ( )tutx
dt
dx

dt
xd 4422

2

=++   

To get a state-space form, we let 

 
dt
dxxxx 1

21 , ==   

and get 

 uxx
dt

dx 442 12
2 =++   

thus the state-space equation is 

   




+−−=
=

uxxx
xx

424 212

21
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By definition of derivative, with sampling time T, we have 

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )


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4241
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211   

or 
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Kalman_1.doc Page 8 of 10 



We thus have system equation below 

   




+=
++=+

jjj

jjjj

vy
u

Hx
wBAxx 1

where, assuming T  mS1.0=

   [ 01,
0

,
4.0

0
,

8.04.0
1.01

=







=








=
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w ]

 
Assuming the model parameter uncertainty ( ) 42 10−== QwE j , and the measurement error ( ) 01.02 == RvE j , thus 
we have a computational algorithm below 
 

• System equations 

   




+=
++=+

jjj

jjjj

vy
u

Hx
wBAxx 1

• Predictor equations (Priori) 
 QAPAP += −

T
jj 1

~   
 jjj uBxAx += −1

~   
• Corrector equations (Posteriori) 

 ( ) 1−
+= RHPHHPK T

j
T

jj   

 ( ) ( ) ( ) jj
T
jj

T
jjjj PHKIRKKHKIPHKIP −=+−−=~   

 ( )jjjjj xHyKxx −+=~   
where 

21122212 ;,,;,,,;,;, ×××× ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ HKuBPRQAvywx jjjjjjj  
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Remark 4 
Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy 
measurement. 
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