A Simple Introduction to Kalman Filter

Duy-Ky Nguyen, PhD 2002-Nov-22

© All Rights Reserved

1. Random Variable

1.1. Probability Axioms

Given an event E in a sample space S which is either finite with N elements or countaby infinite with $N = \infty$ elements, then we can write

$$S \equiv \left(\bigcup_{i=1}^{N} E_i\right)$$

and a quality $P(E_i)$, called the *probability* of event E_i , is defined such that

1. $0 \le P(E_i) \le 1$,

2.
$$\sum_{i=1}^{N} P(E_i) = 1$$

3. Additivity $P(E_1 \cup E_2) = P(E_1) + P(E_2)$, where E_1 and E_2 are mutually exclusive, ie $E_1 \cap E_2 = \emptyset$

1.2. Conditional Probability

The conditional probability of an event A assuming that B has occurred, defined as

$$P(A \cap B) = P(A|B)P(B)$$

For independent events, we have

$$P(A|B) = P(A)$$

SO

$$P(A \cap B) = P(A) P(B)$$

1.3. Expectation

Expectation, also known as average or mean, is defined as

$$\overline{X} = E(x) = \mu = \langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Recursive expectation

$$\mu_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n+1} \left(x_{n+1} + \sum_{i=1}^{n} x_i \right) = \frac{x_{n+1} + n\mu_n}{n+1}$$

1.4. Variance and Deviation

Variance is a measure of variation around the mean and defined as

$$\sigma^2 = E(x - \mu)^2 = \langle (x - \mu)^2 \rangle = \operatorname{var}(x) = E[x - E(x)]^2 = \langle (x - \langle x \rangle)^2 \rangle$$

and Deviation is the square root of Variance, ie. σ

1.5. Covariance

Covariance provides a measure of how strong relation between 2 variables, and defined as

$$\operatorname{cov}(x_i, x_j) = \langle (x_i - \mu_i)(x_j - \mu_j) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

as

$$\left\langle \left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right\rangle =\left\langle x_{i}x_{j}+\mu_{i}\mu_{j}-\mu_{i}x_{j}-\mu_{j}x_{i}\right\rangle =\left\langle x_{i}x_{j}\right\rangle +\mu_{i}\mu_{j}-\mu_{i}\left\langle x_{j}\right\rangle -\mu_{j}\left\langle x_{i}\right\rangle$$

For independent variables

$$\langle x_i x_j \rangle = \langle x_i \rangle \langle x_j \rangle$$

so covariance of independent variables equals to zero, as expected.

Covariance of the same variable is its variance

$$\operatorname{cov}(x_i, x_i) = \langle (x - \mu_i)(x - \mu_i) \rangle = \langle (x - \mu_i)^2 \rangle = \operatorname{var}(x)$$

For 2 variables, the covariance is related to the variance by

$$var(x + y) = \langle (x - \mu_x + y - \mu_y)^2 \rangle = \langle (x - \mu_x)^2 + (y - \mu_y)^2 + 2(x - \mu_x)(y - \mu_y) \rangle = var(x) + var(y) + 2cov(x, y)$$

For 2 independent variable

$$var(x + y) = var(x) + var(y)$$

2. Derivation of Kalman Gain

Discrete time linear systems with noise are presented in the state equation below

$$x_{j} = a x_{j-1} + b u_{j} + w_{j} ag{1}$$

and its measurable output, also with noise

$$y_j = hx_j + v_j \tag{2}$$

Because noises are unknown, so we need to define 2 new noise-free states

 \overline{x}_i : priori state as predictor

 \widetilde{x}_i : posteriori state as corrector

we then have predicted estimate system equation (without noises)

$$\overline{x}_{i} = a \widetilde{x}_{i-1} + b u_{i} \tag{3}$$

$$\widetilde{y}_{i} = h \, \overline{x}_{i} \tag{4}$$

Based on priori estimate, we have a corrected estimate below

$$\widetilde{x}_{j} = \overline{x}_{j} + K\left(y_{j} - \widetilde{y}_{j}\right) \tag{5}$$

where

 $(y_i - \widetilde{y}_i)$: known as **residual**

K is Kalman gain to be determined to minimize error variance below

$$\widetilde{e}_{j} = x_{j} - \widetilde{x}_{j} = x_{j} - \left[\overline{x}_{j} + K(y_{j} - \widetilde{y}_{j})\right] = x_{j} - \overline{x}_{j} - K(hx_{j} + v_{j} - h\overline{x}_{j}) = (1 - hK)(x_{j} - \overline{x}_{j}) - Kv_{j}$$

$$\widetilde{e}_{j} = x_{j} - \widetilde{x}_{j} = (1 - hK)\overline{e}_{j} - Kv_{j}$$
(6)

where

$$\overline{e}_j = x_j - \overline{x}_j \tag{7}$$

Kalman_1.doc Page 2 of 10

so its variance is

$$\widetilde{p}_{j} = E\left(\widetilde{e}_{j}^{2}\right) = E\left[\left(1 - hK\right)\overline{e}_{j} - Kv_{j}\right]^{2} = E\left[\left(1 - hK\right)^{2}\overline{e}_{j}^{2} + K^{2}v_{j}^{2} - 2\overline{e}_{j}Kv_{j}\left(1 - hK\right)\right]$$

$$\widetilde{p}_{j} = E\left(\widetilde{e}_{j}^{2}\right) = \left(1 - hK\right)^{2}\overline{p}_{j} + K^{2}R$$
(8)

where

 $E(\overline{e}_j v_j) = E(\overline{e}_j) E(v_j) = 0$: as v_j uncorrelated to x_j and $E(v_j) = 0$

 $\overline{p}_j = E(\overline{e}_j^2)$: variance of priori error \overline{e}_j , known as **priori covariance**

 $R = E(v_i^2)$: variance of noise at measured output

Remark 1

By Kalman, and for reason of mutual interaction, we have used priori and posteriori in the same equation, e.g. \bar{x}_j and \tilde{x}_{j-1} in Eq.(3), \tilde{y}_j and \bar{x}_j in Eq.(4), \tilde{x}_j and \bar{x}_j in Eq.(5).

Eq.(8) gives

$$\frac{\partial p_j}{\partial K} = 2(hK - 1)h\overline{p}_j + 2RK = 2[(h^2\overline{p}_j + R)K - h\overline{p}_j]$$

equating to 0 to minimize the estimate error, and the optimal Kalman gain K is given below

$$K_{j} = \frac{h\overline{p}_{j}}{h^{2}\overline{p}_{j} + R} \tag{9}$$

Note we change K to K_j as it's varied with j. We will use Eq.(9) to eliminate R in Eq.(8). So Eq.(9) is rewritten as

$$R = \frac{h\overline{p}_j}{K_j} - h^2 \overline{p}_j = \frac{h\overline{p}_j}{K_j} (1 - hK_j)$$
 (10)

Substituting into Eq.(8) after changing K to K_j

$$\widetilde{p}_{j} = E(\widetilde{e}_{j}^{2}) = (1 - hK_{j})^{2} \overline{p}_{j} + K_{j} h \overline{p}_{j} (1 - hK_{j}) = \overline{p}_{j} (1 - hK_{j}) (1 - hK_{j} + hK_{j})$$

$$\widetilde{p}_{j} = E(\widetilde{e}_{j}^{2}) = \overline{p}_{j} (1 - hK_{j})$$
(11)

However, it's pointed out by Peter Joseph that Eq.(8) is numerically stable, while its simplified Eq.(11) is not due to round-off computation

We next to compute priori covariance

3. Derivation of Priori Covariance

By Eqs.(1) & (3), the priori covariance is given by

$$\overline{p}_{j} = E(\overline{e}_{j}^{2}) = E(x_{j} - \overline{x}_{j})^{2} = E[(ax_{j-1} + bu_{j} + w_{j}) - (a\widetilde{x}_{j-1} + bu_{j})]^{2} = E(a\widetilde{e}_{j-1} + w_{j})^{2} = E(a^{2}\widetilde{e}_{j-1}^{2} + w_{j}^{2} + 2a\widetilde{e}_{j-1}w_{j})$$

$$\overline{p}_{j} = a^{2}\widetilde{p}_{j-1} + Q$$
(12)

where

 $E(\widetilde{e}_{i-1}w_i) = E(\widetilde{e}_{i-1})E(w_i) = 0$: as w_i uncorrelated to x_i , and $E(w_i) = 0$

 $\widetilde{p}_{i-1} = E(\widetilde{e}_{i-1}^2)$: variance of error \overline{e}_{i-1} ,

 $Q = E(w_i^2)$: variance of noise at input

Kalman_1.doc Page 3 of 10

4. Scalar Kalman Filter Algorithm

System equations

$$\begin{cases} x_j = a x_{j-1} + b u_j + w_j, & E(w_j^2) = Q \\ y_j = h x_j + v_j, & E(v_j^2) = R \end{cases}$$

Init State

$$\widetilde{x}_0, \widetilde{p}_0$$

Predictor updates (Priori)

$$\overline{p}_{j} = a^{2} \widetilde{p}_{j-1} + Q$$

$$\overline{x}_{j} = a \widetilde{x}_{j-1} + b u_{j}$$

Corrector updates (Poteriori)

$$K_{j} = \frac{h\overline{p}_{j}}{h^{2}\overline{p}_{j} + R}$$

$$\widetilde{p}_{j} = E(\widetilde{e}_{j}^{2}) = \underbrace{\left(1 - hK_{j}\right)^{2}\overline{p}_{j} + K_{j}^{2}R}_{\widetilde{x}_{j}} = \overline{p}_{j}\left(1 - hK_{j}\right)$$

$$\widetilde{x}_{j} = \overline{x}_{j} + K_{j}\left(y_{j} - h\overline{x}_{j}\right)$$

5. Vector Kalman Filter Algorithm

System equations

$$\begin{cases} \mathbf{x}_{j} = \mathbf{A} \, \mathbf{x}_{j-1} + \mathbf{B} \, \mathbf{u}_{j} + \mathbf{w}_{j}, & E \big(\mathbf{w}_{j} \mathbf{w}_{j}^{T} \big) = \mathbf{Q} \in \mathfrak{R}^{n \times n} \\ \mathbf{y}_{j} = \mathbf{H} \, \mathbf{x}_{j} + \mathbf{v}_{j}, & E \big(\mathbf{v}_{j} \mathbf{v}_{j}^{T} \big) = \mathbf{R} \in \mathfrak{R}^{m \times m} \end{cases}$$

Init State

$$\widetilde{\mathbf{x}}_0, \widetilde{\mathbf{P}}_0$$

Predictor updates (Priori)

$$\overline{\mathbf{P}}_{j} = \mathbf{A} \widetilde{\mathbf{P}}_{j-1} \mathbf{A}^{T} + \mathbf{Q}$$

$$\overline{\mathbf{x}}_{j} = \mathbf{A} \widetilde{\mathbf{x}}_{j-1} + \mathbf{B} \mathbf{u}_{j}$$

Corrector updates (Posteriori)

$$\mathbf{K}_{j} = \overline{\mathbf{P}}_{j} \mathbf{H}^{T} \left(\mathbf{H} \overline{\mathbf{P}}_{j} \mathbf{H}^{T} + \mathbf{R} \right)^{-1}$$

$$\widetilde{\mathbf{P}}_{j} = E \left(\widetilde{\mathbf{e}}_{j} \widetilde{\mathbf{e}}_{j}^{T} \right) = \underbrace{\left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right) \overline{\mathbf{P}}_{j} \left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right)^{T} + \mathbf{K}_{j} \mathbf{R} \mathbf{K}_{j}^{T}}_{\widetilde{\mathbf{x}}_{i}} = \left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right) \overline{\mathbf{P}}_{j}$$

$$\widetilde{\mathbf{x}}_{i} = \overline{\mathbf{x}}_{i} + \mathbf{K}_{i} \left(\mathbf{y}_{i} - \mathbf{H} \overline{\mathbf{x}}_{i} \right)$$

where

$$\mathbf{x}_{j}, \mathbf{w}_{j} \in \mathfrak{R}^{n \times 1}; \quad \mathbf{y}_{j}, \mathbf{v}_{j} \in \mathfrak{R}^{m \times 1}; \quad \mathbf{A}, \mathbf{Q}, \mathbf{R}, \mathbf{P}_{j} \in \mathfrak{R}^{n \times n}; \quad \mathbf{B}, \mathbf{u}_{j}, \mathbf{K}_{j} \in \mathfrak{R}^{n \times m}; \quad \mathbf{H} \in \mathfrak{R}^{m \times n}$$

Kalman_1.doc Page 4 of 10

6. Kalman Filter Examples

For this paper to be self-contained, I'll use my approximate discretization, An accurate discretization can be found in Ref[1].

6.1. Scalar Kalman filter

Estimate a scalar constant x, a voltage for example. Let's assume that we have the ability to take measurements of the constant, but the measurements are corrupted by a 0.1 volt RMS white measurement noise, thus $R = 0.1^2 = 0.01$

The scalar eugations describing this situation are

$$x_{j+1} = x_j + w_j$$

for the system and

$$y_j = x_j + v_j$$

for the measurement, where

$$E(v_j) = 0$$
, $E(v_j^2) = R = 0.01$

Prersuming a very small process variance, we let $E(w_j^2) = Q = 10^{-5}$, thus we have a computational algorithm below

• System equations

$$x_{j+1} = x_j + w_j$$
$$y_j = x_j + v_j$$

• Predictor equations (Priori)

$$\overline{p}_{j} = \widetilde{p}_{j-1} + Q, \quad Q = 10^{-5}$$

$$\overline{x}_{j} = \widetilde{x}_{j-1}$$

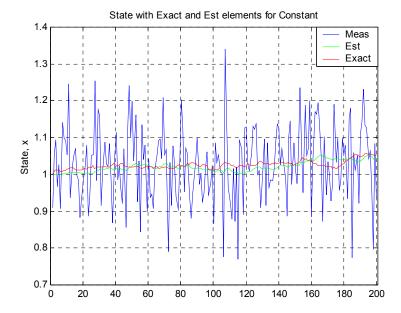
• Corrector equations (Posteriori)

$$K_{j} = \frac{\overline{p}_{j}}{\overline{p}_{j} + R}, \quad R = 0.01$$

$$\widetilde{p}_{j} = \underbrace{\left(1 - K_{j}\right)^{2} \overline{p}_{j} + K_{j}^{2} R}_{\widetilde{x}_{j}} = \overline{p}_{j} \left(1 - K_{j}\right)$$

$$\widetilde{x}_{j} = \overline{x}_{j} + K_{j} \left(y_{j} - \overline{x}_{j}\right)$$

Kalman_1.doc Page 5 of 10

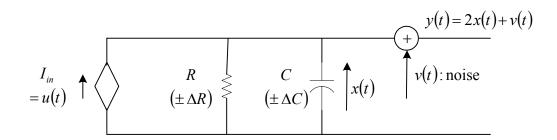


Remark 2

Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy measurement.

6.2. Scalar Kalman filter formulation for RC circuit

We consider the voltage measurement at the output of the RC circuit in the figure below, using a high-impedance voltmeter. Because these measurements are noisy, and also the component values imprecise $(\pm \Delta R, \pm \Delta C)$, we require an improved estimate of the output voltage. For this purpose we want to use a Kalman filter for which we develop the system and measurement models as follows.



The Kirchoff nodal equation is

$$u(t) = \frac{x(t)}{R} + C\frac{dx}{dt}$$

By definition of derivative, with sampling T we have

$$u_j = \frac{x_j}{R} + C \frac{x_{j+1} - x_j}{T}$$

or

$$x_{j+1} = \left(1 - \frac{T}{RC}\right)x_j + \frac{T}{C}u_j$$

Kalman_1.doc Page 6 of 10

Assuming the measurement to have gain of 2, the circuit elements to have values $R = 3.3k\Omega$, $C = 1000\mu F$ and sampling period T = 0.1s, the input to be step function of $300\mu A$, our signal and measurement equations are

$$x_{j+1} = 0.97x_k + 0.03 + w_j$$
$$y_j = x_j + v_j$$

Assuming the model parameter uncertainty $E(w_j^2) = Q = 10^{-4}$, and the measurement error $E(v_j^2) = R = 0.01$, thus we have a computational algorithm below

• System equations

$$x_{j+1} = 0.97x_k + 0.03 + w_j$$
$$y_j = x_j + v_j$$

Predictor equations (Priori)

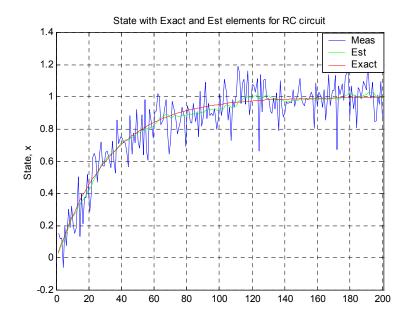
$$\overline{p}_j = a^2 \widetilde{p}_{j-1} + Q$$
, $a = 0.97$, $Q = 0.01$
 $\overline{x}_j = a \widetilde{x}_{j-1} + 0.03$

Corrector equations (Posteriori)

$$K_{j} = \frac{h\overline{p}_{j}}{h^{2}\overline{p}_{j} + R}, \quad h = 1, \quad R = 0.01$$

$$\widetilde{p}_{j} = \underbrace{\left(1 - hK_{j}\right)^{2}\overline{p}_{j} + K_{j}^{2}R}_{\widetilde{x}_{j}} = \overline{p}_{j}\left(1 - hK_{j}\right)$$

$$\widetilde{x}_{j} = \overline{x}_{j} + K\left(y_{j} - h\overline{x}_{j}\right)$$



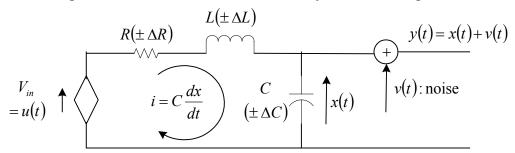
Remark 3

Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy measurement.

Kalman_1.doc Page 7 of 10

6.3. Vector Kalman filter formulation for RLC circuit

We consider a design of an estimator for a second-order system consisting of R, L, C elements



The loop equation for this circuit is

$$u(t) = Ri + L\frac{di}{dt} + x(t), \quad i = C\frac{dx}{dt}$$

SO

$$u(t) = RC\frac{dx}{dt} + LC\frac{d^2x}{dt^2} + x(t)$$

or

$$\frac{d^2x}{dt^2} + \frac{R}{L}\frac{dx}{dt} + \frac{1}{LC}x(t) = \frac{1}{LC}u(t)$$

Assuming $R = 5k\Omega$, L = 2.5H, and $C = 0.1\mu F$, we have

$$\frac{d^2x}{dt^2} + 2 \times 10^3 \frac{dx}{dt} + 4 \times 10^6 x(t) = 4 \times 10^6 u(t)$$

If we scale time from seconds to milliseconds, ie. $t \rightarrow 10^{-3} t$, we obtain

$$\frac{d^2x}{10^{-6}dt^2} + 2 \times 10^3 \frac{dx}{10^{-3}dt} + 4 \times 10^6 x(t) = 4 \times 10^6 u(t)$$

or

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 4x(t) = 4u(t)$$

To get a state-space form, we let

$$x_1 = x, \ x_2 = \frac{dx_1}{dt}$$

and get

$$\frac{dx_2}{dt} + 2x_2 + 4x_1 = 4u$$

thus the state-space equation is

$$\begin{vmatrix} \dot{x}_1 = x_2 \\ \dot{x}_2 = -4x_1 - 2x_2 + 4u \end{vmatrix}$$

By definition of derivative, with sampling time T, we have

$$x_{1}(j+1)-x_{1}(j) = Tx_{2}(j)$$

$$x_{2}(j+1)-x_{2}(j) = -4Tx_{1}(j)-2Tx_{2}(j)+4Tu(j)$$

or

$$x_1(j+1) = x_1(j) + Tx_2(j)$$

$$x_2(j+1) = -4Tx_1(j) + (1-2T)x_2(j) + 4Tu(j)$$

Kalman_1.doc Page 8 of 10

We thus have system equation below

$$\mathbf{x}_{j+1} = \mathbf{A}\mathbf{x}_j + \mathbf{B}u_j + \mathbf{w}_j$$
$$y_j = \mathbf{H}\mathbf{x}_j + v_j$$

where, assuming T = 0.1mS

$$\mathbf{A} = \begin{bmatrix} 1 & 0.1 \\ -0.4 & 0.8 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0.4 \end{bmatrix}, \quad \mathbf{w}_j = \begin{bmatrix} w_j \\ 0 \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Assuming the model parameter uncertainty $E(w_j^2) = Q = 10^{-4}$, and the measurement error $E(v_j^2) = R = 0.01$, thus we have a computational algorithm below

• System equations

$$\mathbf{x}_{j+1} = \mathbf{A}\mathbf{x}_j + \mathbf{B}u_j + \mathbf{w}_j$$
$$y_j = \mathbf{H}\mathbf{x}_j + v_j$$

• Predictor equations (Priori)

$$\overline{\mathbf{P}}_{j} = \mathbf{A} \widetilde{\mathbf{P}}_{j-1} \mathbf{A}^{T} + \mathbf{Q}$$

$$\overline{\mathbf{x}}_{j} = \mathbf{A} \widetilde{\mathbf{x}}_{j-1} + \mathbf{B} \mathbf{u}_{j}$$

• Corrector equations (Posteriori)

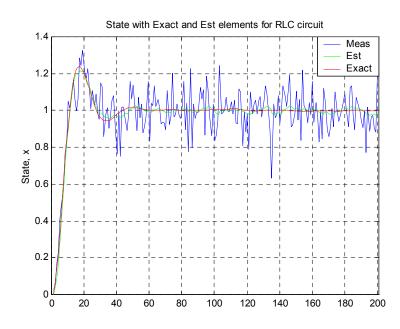
$$\mathbf{K}_{j} = \overline{\mathbf{P}}_{j} \mathbf{H}^{T} \left(\mathbf{H} \overline{\mathbf{P}}_{j} \mathbf{H}^{T} + \mathbf{R} \right)^{-1}$$

$$\widetilde{\mathbf{P}}_{j} = \underbrace{\left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right) \overline{\mathbf{P}}_{j} \left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right)^{T} + \mathbf{K}_{j} \mathbf{R} \mathbf{K}_{j}^{T}}_{\widetilde{\mathbf{X}}_{j}} = \left(\mathbf{I} - \mathbf{K}_{j} \mathbf{H} \right) \overline{\mathbf{P}}_{j}$$

$$\widetilde{\mathbf{x}}_{j} = \overline{\mathbf{x}}_{j} + \mathbf{K}_{j} \left(\mathbf{y}_{j} - \mathbf{H} \overline{\mathbf{x}}_{j} \right)$$

where

$$\mathbf{x}_j, \mathbf{w}_j \in \mathfrak{R}^{2 \times 1}; \quad \mathbf{y}_j, \mathbf{v}_j \in \mathfrak{R}; \quad \mathbf{A}, \mathbf{Q}, \mathbf{R}, \mathbf{P}_j \in \mathfrak{R}^{2 \times 2}; \quad \mathbf{B}, \mathbf{u}_j, \mathbf{K}_j \in \mathfrak{R}^{2 \times 1}; \quad \mathbf{H} \in \mathfrak{R}^{1 \times 2}$$



Remark 4Note the green-colored estimate tracks the red-colored exact signal quite well even with the blue-colored noisy measurement.

Kalman_1.doc Page 9 of 10

7. References

- $[1] \, \underline{http://www.tramhungchau.com/CTL/dig_ctl.pdf}$
- [2] Candy, J V, Signal Processing: the model based approach. McGraw-Hill, 1986

Kalman_1.doc Page 10 of 10