
Intro to the TI-RTOS Kernel Workshop - Cover 0 - 1

Intro to the TI-RTOS Kernel Workshop

Lab Manual

Intro to the TI-RTOS Kernel Workshop

Lab Manual, Rev 2.0 – April 2016

in association with

Notice

0 - 2 Intro to the TI-RTOS Kernel Workshop - Cover

Notice

These materials, slides, labs, solutions were originally developed by Texas Instruments
but were not updated beyond May 2015.

Mindshare Advantage, LLC, is an “in association with TI” third party who continues to
develop new labs/solutions and material for this workshop as well as continue to keep
the labs up to date for all targets working correctly with the latest IDE and software
tools from Texas Instruments. Texas Instruments has granted Mindshare Advantage,
LLC exclusive permission to update and maintain this workshop as well as teach this
workshop to TI customers around the world.

If you plan to use this material for anything other than as a self-paced experience or
print/view this manual as part of the tuition cost to attend this course, you must
contact Mindshare Advantage first to receive permission.

Mindshare Advantage reserves the right to update this Student (and Lab) Guide to
reflect the most current product information for the spectrum of users. If there are
any differences between this Guide and a technical reference manual, references
should always be made to the most current reference manual and/or datasheet from
Texas Instruments. Information contained in this publication is believed to be accurate
and reliable. However, responsibility is assumed neither for its use nor any
infringement of patents or rights of others that may result from its use. No license is
granted by implication or otherwise under any patent or patent right of Texas
Instruments or Mindshare Advantage.

If you have any questions pertaining to this material, please contact Mindshare
Advantage at:

www.MindshareAdvantage.com

Revision History

1.0 Nov 2015 – entire workshop updated to the latest tools (slides, code, labs, etc.)

1.2 Mar 2016 – updated C6000 audio labs to latest tools

2.0 Apr 2016 - added CC2650 target, updated all ppts, labs, solutions

http://www.mindshareadvantage.com/

 Lab 1 – System Setup

Intro to the TI-RTOS Kernel Workshop - Welcome 1 - 17

Lab 1 – System Setup

A number of different LaunchPads, Evaluation Modules (EVMs) and Experimenter Kits (EK) can
be driven by Code Composer Studio (CCS).

This first lab exercise will provide familiarity with the method of verifying the target hardware and
setting up CCS to use the selected target. The following diagram explains what you will
accomplish in this lab from a hardware and software perspective:

Lab 1 – “Load & Run a .OUT File”

1. Verify hardware setup

2. Verify JTAG/EMU connection

1. Launch CCSv6

2. Import Target Config File

3. Launch Debug Session

4. Load blink_target.out

5. Run BLINK program

6. Terminate Debug Session

7. Close CCSv6

Hardware (LaunchPad/EK)

Software

Time: 15 min

Note: if you have NOT followed the installation instructions
for your environment already, please let your instructor know !!

Lab Goal:

Someone hands you an
executable (.OUT) file and you
want to LOAD and RUN IT.

WARNING – PLEASE READ BEFORE CONTINUING:

Hint: If you have NOT already followed ALL installation instructions for your system – installing
CCS, downloading driver libraries and installing the lab/sols folders for the workshop
labs, PLEASE inform your instructor ASAP so they can help you. If you did not follow the
installation instructions BEFORE the workshop, do NOT continue with this lab until your
setup is complete.

*** turn the page for the actual lab instructions… ***

Lab 1 – Procedure

1 - 18 Intro to the TI-RTOS Kernel Workshop - Welcome

Lab 1 – Procedure

In this lab, you will simply run Code Composer Studio (CCS), load an executable output file (blink
LED) and run it. This will test the host PC’s (running CCS) connection to your development board.
We want to make sure your setup is fine and working properly before we move on to later labs in
the workshop.

In this lab, we are only going to load and run a binary file – we will cover WAY more details about
CCS in the next chapter.

NOTE ABOUT: ACTION SYMBOL - ►

Hint: Actions have consequences. And during labs, if you don’t follow instructions, well, there
will be consequences. To help students FIND the actions in labs, the author has added
an ACTION SYMBOL - ► - to help you find the parts of the labs that require you to DO
SOMETHING. So when you see ►, make sure you read/follow those parts of the step.
The rest of the lab is often an explanation of WHAT you’re doing or WHY you are
performing the steps – good stuff – but if you’re just looking for the “next thing to do”,

well, then you have the action symbol to help you skip directly to the next action.

Connect Your Hardware (EVM, LaunchPad) to the PC

1. Attach the USB cable to your development platform.

 This class is designed to work with the MCU LaunchPads (CC2650, Tiva-C, MSP430), C28x
Control Stick and the C6748 LCDK. All labs have been verified on CCSv6.1 or later. If you
have a different board or earlier version of CCS, the labs may not work properly.

 ► MCU USERS: Connect the USB cable from your development board to the host PC.

 Make sure you connect to the EMULATION USB connection on your board because some
have two USB connections and you want the proper one for emulation (see the diagrams
previously shown in the discussion material if you have questions).

 ► TIVA USERS ONLY – make sure the Device/Debug switch is set to “Debug”.

 ► C6000 USERS ONLY – connect the XDS510 Emulator (or whichever emulator you

purchased) to the 14-pin header on your C6748/OMAP1338 LCDK.

Also, check SW1 (Switch 1) and make ALL switches are OFF (down, closest to the numbers)

The first four swtiches (1-4) affect the boot modes. You want “no boot”, which means all OFF.

 Lab 1 – Procedure

Intro to the TI-RTOS Kernel Workshop - Welcome 1 - 19

Launch CCS and Run “Blink LED”
2. Launch CCS.

 ► Launch CCS on your system using whatever means necessary.

 Most folks are using their own laptops, so you should already know how to launch CCS. If
not, please ask the instructor (hint: search for an icon that says CCSv6.x).

 ► If CCS asks about which workspace to use, select Browse and browse to:

 C:\TI_RTOS\Workspace

 If you have your own workspace already set up and this dialog does not pop up, select:

 File  Switch Workspace  Other

 And browse to:

 C:\TI_RTOS\Workspace

► Click Ok.

 ► If new components were installed, close Resource Explorer, close CCS and re-open CCS
so that these new components will be activated.

3. You may need to deal with a “new user” license agreement.

 If CCS asks for credentials regarding your license, you may need to tell CCS what type of
license you prefer. If you already have a license or have used CCS before and chosen a
license agreement, you can skip this step.

 Select Help  CCS License Info and then click the “Upgrade” tab below and “Launch License
Setup” button….

 Then choose the type of license that best fits your situation – if you don’t know, choose
“Evaluate”. The list of license options will be different than your neighbor’s list because it is
based on the devices you installed with CCS.

Lab 1 – Procedure

1 - 20 Intro to the TI-RTOS Kernel Workshop - Welcome

4. Import the target configuration file for YOUR development board.

In order to communicate with your specific board, you will need to launch a specific target
config file that matches your target. A target config file tells CCS how to communicate with a
specific target using a specific connection.

Normally, the target config file is set up for you when you create a project. But in this lab, we
are only using the executable, so we need to launch the file that connects us to the specific
board so we can RUN that executable. In later labs, this step will be unnecessary (except for
C6K users):

► Select: View  Target Configurations:

► Right-click on “User Defined” and select “Import Target Configuration”:

► Browse to: C:\TI_RTOS\Workshop_Admin\Target_Config_Files and select the

target config file that matches YOUR SPECIFIC TARGET:

Note: TM4C = Tiva C Series

 Lab 1 – Procedure

Intro to the TI-RTOS Kernel Workshop - Welcome 1 - 21

 ► When the dialogue box appears, select “Copy”:

 This will COPY the target configuration file from the previous folder into the proper directory
used by CCS for Target Configuration Files. You should now see this new target config file in
the User Defined folder in CCS.

C6000 USERS: If your emulator is different than the Spectrum Digital XDS510, you will need
to modify the target configuration file to reflect a different emulator (and rename the file).

5. Set this new target config file as the DEFAULT.

 ► Right-click on the newly imported config file and select “Set as Default”.

 This will set your specific target config file to the default and it should now appear in BOLD.

6. Launch the target config file.

 When you LAUNCH a target config file, CCS will change to the Debug perspective (more on
perspectives in the next chapter) and open a debug session allowing you to communicate
with your target.

 ► Right-click on your target config file and select “Launch Selected Configuration”:

If you get a “Cannot connect to target” style error, make sure you chose the proper target
config file for your target. If you continue to get this error, let your instructor know.

7. Connect to the target.

 Once you have opened the debug session, the next step is to connect to your target.

 ► You can simply click the symbol on the toolbar:

 ► Or, you can choose: Run  Connect Target:

 You are now connected to the target via JTAG Emulation over the USB connection – you are
ready to load a program and run it.

Lab 1 – Procedure

1 - 22 Intro to the TI-RTOS Kernel Workshop - Welcome

8. Load the executable program – blink_target.out.

 Each development board will have its own unique .out file created specifically for that board.

 ► Select: Run  Load  Load Program:

 And browse to the proper directory based on the target you are using. All labs and solution

files should be contained in: C:\TI_RTOS\TARGET where TARGET is either CC2650,

C28x, C6000, MSP430 or TM4C. Locate the \Labs\Lab_01 folder based on the appropriate

target and load the .out file located there.

 For example, if you are using the Tiva-C (TM4C) LaunchPad, browse to:

 C:\TI_RTOS\TM4C\Labs\Lab_01\blink_TM4C.out

 ► Load blink_target.out to the target.

Note: If CCS complains that it can’t find a source file, IGNORE it. Source files aren’t available
for binary-only (.out) files.

 Lab 1 – Procedure

Intro to the TI-RTOS Kernel Workshop - Welcome 1 - 23

9. Run the program.

 After loading the program,

 ► click the green Resume (Play) button:

 You should see an LED blinking on your target.

 If you don’t see anything blinking, your system may need some assistance. Check:

 Did you load the correct .out file for your target?

 Do you have the right target board?

 Did you use import and use the correct target config file?

If all else fails, terminate your debug session (click on the red box, see next step), close CCS,
open it back up and retrace your steps. If you still can’t get it to work, inform your instructor.

Terminate the Debug Session
10. Terminate the debug session.

 If you see the LED blinking, you can now terminate the session.

 ► Click the red “Terminate” button:

 This will take you back to CCS’s Edit Perspective.

11. You can close CCS or leave it open.

 ► Make fun of any neighbors who aren’t done yet.

That’s it, You’re Done !

 You’re finished with this lab. If time permits, move on to the optional Lab that
follows where you can explore CCS Help, Tutorials, CCS tips & tricks, App
Center, Resource Explorer Examples, etc.…

Optional Lab – Exploring CCS Help – Procedure

1 - 24 Intro to the TI-RTOS Kernel Workshop - Welcome

Optional Lab – Exploring CCS Help – Procedure

In this short optional lab, you will be able to explore some of the additional features of CCS via
the HELP menu and the CCSv6 App Store.

1. Check out the CCS VIDEO TUTORIALS.

 This requires an internet connection, so if you don’t have one, you can skip this step.

 ► Select Help  CCS Videos and Tutorials  All CCS Videos:

 Note – this will only work if your laptop has an internet connection in the classroom
(which may or may not be the case).

 If your laptop connects, you have a TON of videos you can watch:

 Optional Lab – Exploring CCS Help – Procedure

Intro to the TI-RTOS Kernel Workshop - Welcome 1 - 25

2. Try out the CCS App Store.

 Select View  App Center:

 Check out the different options you have for downloading new products.

3. See what’s in the new Resource Explorer.

 Looking for examples to help you get started? The Resource Explorer has tons of examples
for different target architectures.

 Select: View  Resource Explorer (Examples):

 Click around for your specific target and see what types of examples exist. There is some
really good stuff in there to help you get started…

4. Peruse the TIPS and TRICKS for Eclipse.

 This also requires an internet connection.

 ► Select Help  Tips and Tricks…:

 You’re finished with the optional lab…

 Lab 2 – CCSv6 Projects

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 23

Lab 2 – CCSv6 Projects

In this lab, you will have an opportunity (maybe your first one) to work with CCSv6 and your target
development board. Because this is our first real lab of the workshop, we plan to keep it very
simple and just focus on the CCS basics.

First, we’ll create a new project that performs the famous “hello world” program for MCUs – uh,
blink an LED. You will then have the opportunity to perform some basic debugging in CCS. Once
finished, you can move on to the optional parts of the lab to explore some other debugging skills.

While this is definitely the “MCU BIOS Workshop”, these labs intentionally do not incorporate the
SYS/BIOS Real-time operating system and scheduler. We have plenty of time to learn those
concepts in later labs. 

Lab 2 – MCU “Hello World” – Blink an LED

 Time: 45min

Lab Goal:
You are new to CCSv6 and
simply want to BLINK AN LED
(the “hello world” of MCU) on
your target board – and learn a
few things about the IDE

 Lab 2 – Blink LED (no BIOS)
• Create a new project

• Add (copy) main.c

• Add (link/copy) driver “library”

• Add linker.cmd file

• Build, load, debug

 Architecture “Markers”
• Some labs contain architecture

“markers” that differentiate
specific instructions for your target

• Pay close attention to these:

Note: project creation/debug slides at end of lab

*** turn to the next page for the actual lab procedure ***

Lab 2 – Procedure

2 - 24 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 – Procedure

In this lab, we will create a project that contains one simple source file – main.c – which has the

necessary code to blink an LED on your target board without the use of SYS/BIOS. It simply
makes a few calls to a few library functions to set up the pins and then toggle them.

The purpose of this lab is to practice creating projects and getting to know the look and feel of
CCSv6. If you already have experience with this IDE, it will be a good review and you will
probably learn some things you don’t know. The labs start out very basic, but over time, they get
a bit more challenging and will contain less “hand holding”.

NOTE ABOUT FOLLOWING INSTRUCTIONS – PLEASE READ AND FOLLOW
THIS INSTRUCTION !! 

Note: Please be considerate of the whole class by FIRST following the
instructions in each lab until you are done – and resist the urge to click on buttons
to see what they do or dig into the assembly code. Get the lab done FIRST, then
take all the time you want to explore features of the IDE. That way, when everyone
is done with the lab, we can move on to the next chapter in a timely fashion. You
can also spend time doing the OPTIONAL lab steps and/or watching the
architecture videos. THANKS.

Intro to TI-RTOS Workshop Files

1. Browse the directory structure for the workshop labs.

 First, we would like to introduce you to the workshop files throughout the labs.

 ►Using Windows Explorer, locate the following folder:

 C:\TI_RTOS

 In this folder, you will find at least four folders – aptly named for the four architectures this
workshop covers – C28x, C6000, CC2650, MSP430 and TM4C (Tiva-C).

 ► Click on YOUR specific target’s folder. Underneath, you’ll find two more folders – \Labs

and \Sols. You will be working mostly from the \Labs folder but if you get stuck, you may

opt to import the lab’s archived solution (.zip) from the \Sols directory and find the errors of

your way.

 ► Click on the \Labs folder and you’ll find one folder per lab (e.g. Lab_01, etc.).

 ► Click on \Lab_02. In this folder, you will find two key directories – \Files and

\Project. The Files folder contains the “starter files” you need to create each project. The

Project folder will contain your project files and settings.

 When the instructions say “navigate to the Lab4 folder”, this assumes you are in the tree
related to YOUR specific target.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 25

Create and Explore Your New CCS Project

2. Create a new CCS project.

 ► Launch CCS. If you are asked to choose a workspace, select Browse and pick the

workspace located at C:\TI_RTOS\Workspace and check the box that says “don’t ask me

again”.

 Each architecture is slightly different in the way projects are created – some provide target
config files in the project, some don’t. Some provide linker command files, some don’t. We
will attempt to provide some guidance regarding these differences along the way – so please
pay attention to the instructions and follow them carefully.

 To create a new project,

 ► select Project → New CCS Project:

 When the New Project Wizard shows up (MSP430 example shown),

 ► Select the appropriate options for your target (explained on the next page). Pay attention
to the architectural differences noted. UNCHECK THE “Use default location” CHECKBOX.

(refer to the next page for hints on which options to use for YOUR target…)

Lab 2 – Procedure

2 - 26 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

 Target: ► choose one of the following based on your specific target – start typing the
following into the Target field and then choose the proper device just to the right:

 C28x: controlSTICK – Piccolo F28069

 C6000: LCDKC6748 (or LCDKOMAPL138)

 CC2650: CC2650F128

 MSP430: MSP430F5529

 TM4C: Tiva TM4C123GH6PM

 Connection: ► choose the following for each target:

 C28x:

 C6000: leave blank

 CC2650:

 MSP430:

 TM4C:

 Project Name: ► Use the following name – replacing target with your target name:

 blink_target_CCS

 …where target is either C28x, C6000, CC2650, MSP430 or TM4C. For example, if you are

using the MSP430 Launchpad, the name of your project would be:

 blink_MSP430_CCS

Hint: Whenever you see “target” in lab instructions, make sure you always use the letters that

correspond to your specific target.

 Location: ► Uncheck the “Use default location” checkbox and specify
(browse to) the folder:

 C:\TI_RTOS\Target\Labs\Lab_02\Project

 …where Target is, again, your specific target – C28x, C6000, MSP430 or TM4C. As you can
see, we are not using the default workspace location for this project.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 27

 C6000 USERS ONLY – CHOOSE ELF BINARY FORMAT:

 C6000 users have a choice between COFF (the older format) and ELF (the newer format).
COFF will not work with TI-RTOS for C6000. So…

 ► Click Advanced settings and change the binary format to ELF (if not already chosen):

 ALL USERS EXCEPT FOR CC2650– Project templates and examples:

 ► Choose “Empty Project” (see arrow on previous diagram two pages earlier)..

 CC2650 USERS ONLY – Project templates and examples:

 ► Choose “TI-RTOS Examples → CC2650 LP → Driver Ex → TI Driver Ex → Empty Ex →

Empty Project””

 ALL USERS:

 ► Click Finish. (Note: we will look at the Advanced Settings shortly).

 Your project should look something like this (Note: example shown is TM4C, your specific
linker command file and target config file will match your target – and C6000 users won’t
have a target config file at all, CC2650 will completely differentt):

Lab 2 – Procedure

2 - 28 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

3. Add a source file (main.c) to your project.

 The project for each target will require one source file (main.c), linker command file and a

library (or library folder) to support the blink LED code. We will first add (copy) the
source/command files and then add (link) the library files (if required).

 ► Right-click on your project and select “Add Files”.

 ► Browse to the following file and add (copy) it into your project:

 C:\TI_RTOS\Target\Labs\Lab_02\Files\main.c

 …where Target denotes your specific target. We will look at the code inside main.c shortly.

4. C28x, TM4C USERS ONLY – add additional files to your project

 When the project is created, you will notice that a linker command file (.cmd) is automatically
added to your project. However, for a few targets, additional files are needed. These are
noted below…

 C28x users – you must add an additional linker.cmd file due to the use of the header file

programming methodology which is the most widely used method for users of C28x devices.

 Later, you will also add in a folder full of source files as well. If you want to know more about
how all these files work in detail, the author recommends taking the C28x 1-day or 3-day
workshops.

C28x USERS ONLY:

► Add (copy) the following linker.cmd file from ControlSuite (nonBIOS command file):

\controlSUITE\device_support\f2806x\v151\F2806x_headers\cmd\...

TM4C Users ONLY:

► If you are using CCSv5.5 or later, *_startup_ccs.c is auto-added to your project. If you’re
using CCSv5.4 or earlier, you need to add (copy) *_startup_ccs.c to your project. This file is
used to configure the reset and interrupt vectors so that your code will worked “disconnected”
from CCS. When you use BIOS (in the next lab), this file will become unnecessary.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 29

Add Libraries and Include Search Paths

Whoops, did you even know you had a problem already? Maybe not.

► Build your project by using the “hammer”:

CC2650 Users: you will not have any errors because you are using a TI-RTOS driver template

which already has the library added for you.

You will find that there are errors in your code – similar to this one:

Why does this happen? Because there are header files in main.c that the tools can’t find and
possibly library files missing (depending on your target).

So, in the next few steps, you’ll be adding libraries (or folders) to your project as well as adding
include search paths.

You have basically two options to add PATH statements to your project – either hard code them
or use variables. Hard coding works, but is less portable. Using variables takes a little work up
front, but much less work if you want to hand your project off to someone and have them get it
working quickly. So, “pay me now” (variables) or “pay me later over and over again” (hard coded
paths).

The process of using variables for path statements is left as an optional lab at the end of this
chapter. If you get done early, you are welcome to learn more about how to create portable
projects. In this workshop, we will use VARIABLES but not provide a long explanation of why/how
these variables work. The entire discussion on these variables is left to a video as well as the
optional lab in this chapter. If you want all the details, watch the video and go through the optional
lab in this chapter.

We will shortcut the discussion and simply ask you to use the variables given and then import a

file called vars.ini to populate those variables in the proper place. There are TWO reasons we

use variables in this workshop:

 In order to make your own projects portable, it is important to at least be exposed to the
concept of using variables for paths

 When you import projects later on, the author used these exact variables in the solutions
and the starter projects. If your paths are different, it all works just fine. This will help us
avoid mismatches in what the author used as the default path vs. a student’s installation
of the tools.

Lab 2 – Procedure

2 - 30 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

5. Modify vars.ini and import the variable(s).

 Here is the basic idea. If user A sets a path for include files equal to X (C:\mylib) and user

B has his tools set to path Y (D:\mylib) and user A hands off a project to user B and says

“build it”, it won’t build – the paths don’t match. However, if these two users share a variable
named “MYLIB = “ and sets this variable in CCS, each user can have their own path for the
tools and the project in both environments will build properly. Same variable – different path.
Honestly – this is a beautiful thing.

 vars.ini will contain the path and the variable. When you import vars.ini into your

workspace, ALL projects in that workspace can use the same variable. Warning – if you

switch workspaces, you will need to re-import vars.ini.

 Open vars.ini for editing by doing the following:

 ► Select File  Open File and browse to:

 C:\TI_RTOS\vars.ini

 You will see a file that looks similar to this (but probably have paths to newer tools):

 Most users only need ONE of these paths. Note: PDK_INSTALL is for C6000 users. So,

 ► Edit YOUR target’s path to match your actual tools location in your file system and then…

 ► Delete the other variables you don’t need.

 ► Save vars.ini.

 To import this file and populate this variable into your workspace (so you can USE it in future
steps), select:

 File  Import and then expand the category “Code Composer Studio”:

 ► Select “Build Variables” and click Next.

 ► Browse to the location of vars.ini, check the box to “Overwrite existing values” and then

click Finish:

 Your variable is now set for your current workspace. You will use this variable name to

represent the PATH used in vars.ini – in later steps…

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 31

6. FOR Tiva-C Users ONLY – link a library to your project.

 MSP430, C6000 and C28x USERS – PLEASE SKIP TO THE NEXT STEP

 In order to BLINK an LED on your board, we will be making calls (in main.c) to functions
which are contained in driver libraries.

 ► Right-click on your project and Add (link) the following library file to your project (you may
have a newer version of Tivaware then shown below):

C:\TI\tirtos_tivac_2_14_00_10\products\TivaWare_C_Series-

2.1.1.71b\driverlib\ccs\Debug\driverlib.lib

► Link the library file relative to your TIVAWARE_INSTALL variable:

Note: The paths listed above are examples. If you have an updated driver library that is
different than above, link in the LATEST driver installed on your system. For example, if
TivaWare was updated to something newer than 2_14_00_10, the above path is incorrect

– so simply use common sense to link in the latest driver library installed on your PC.

 Your project should now look something like this. The example below shows the Tiva-
C/TM4C target version:

Double check you have main.c, a .lib file and a .cmd file.

Lab 2 – Procedure

2 - 32 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

7. FOR MSP430 USERS ONLY – import folder of files to your project.

 IF YOU ARE NOT AN MSP430 USER, PLEASE SKIP TO THE NEXT STEP.

 The recommended way to use MSP430WARE is to IMPORT the folder that contains the
library source files into your project.

 ► Right-click on the project and select: Import  Import

 ► Then perform the following as shown in the graphic below:

a. Expand General and click on File System (then click Next).

b. Browse to your MSPWare driverlib location: e.g (you could have a newer path).:

 C:\TI\tirtos_msp43x_2_16_00_08\products\msp430_driverlib_2_

21_00_08a\driverlib\

 – choose the folder MSP430F5xx_6xx. Click Ok.

c. Check the box next to the folder on the left – MSP430F5xx_6xx (not …FR5xx_6xx_).

d. Check the box next to Create top-level folder

 ► Click Finish.

 You should now see the COPIED folder “MSP430F5xx_6xx” in your project.

 ► Double-check you did not link in the “FR5xx_6xx” version (common mistake).

 You also need to TURN OFF the ULP Advisor. Normally, you would want this on, but the
default is to warn you of every possible way to save power (great default, just gets in the way
in early development) – so you’re going to turn it off.

 ► Select Properties  Build  MSP430 Compiler  ULP Advisor and then click None.

 ► Click Ok.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 33

8. FOR C28x USERS ONLY – import folder of files to your project.

 IF YOU ARE NOT A C28x USER, PLEASE SKIP TO THE NEXT STEP.

 The recommended way to use controlSUITE is to add the necessary header source files for
your application. In this lab (and all future labs), we are doing the same thing. The author has
created a subset of the header file source code in a folder named \EWare_F28069 which is at
the root of your C28x folder.

 The only way to copy in a FOLDER full of files is to IMPORT it.

 ► Right-click on the project and select: Import  Import

 ► Then perform the following as shown in the graphic below:

a. Expand General and click on File System (then click Next).

b. Browse to: C:\TI_RTOS\C28x\EWare_F28069

c. Check the box next to the folder on the left – EWare_28069.

d. Check the box next to Create top-level folder

 ► Click Finish.

 You should now see the folder “EWare_F28069” in your project. If you expand this folder in

your project, you’ll notice that every file there is COPIED into your project. Note – when we
move to using TI-RTOS in the next lab, you will import the “_BIOS” version.

Lab 2 – Procedure

2 - 34 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

9. ALL USERS (EXCEPT FOR CC2650) – Add INCLUDE search paths for the libraries.

 CC2650 USERS: SKIP THIS STEP (your libraries/search paths are already added)

 Whenever you add a library (.lib) to your project, you also need to add a search path for the
header files associated with that library (or folder of files in the case of MSP430 or C28x).

 ► Right-click on your project and select Properties.

 ► Click on Build → Compiler → Include Options (as shown):

 ► Click on the “+” sign next to #include search path (note: there are TWO boxes – make sure
you pick the right one) and add the following directory path(s) by typing in the path specific to

your tools install using the VARIABLE name from vars.ini.

 (Note – those are BRACES “{ }” around the variables):

 C28x: ${CONTROLSUITE_F2806x_INSTALL}\F2806x_common\include

${CONTROLSUITE_F2806x_INSTALL}\F2806x_headers\include

 C6000 ${PDK_INSTALL}\packages

 MSP430 ${MSP430WARE_INSTALL}\driverlib\MSP430F5xx_6xx

 TM4C ${TIVAWARE_INSTALL}

 ► Click Ok.

Note: These options only apply to the current build configuration (i.e. Debug). If you switch to
the Release configuration, you will need to copy these paths to the new configuration.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 35

10. CC2650 USERS ONLY – file management and modify power policy

 ► Delete empty.c and ccfg.c from your project.

 FYI - empty.c is replaced by main.c. The contents of ccfg.c are incorporated in main.c.

 ► Open CC2650_LAUNCHXL.c and locate the following line of code near line 102:

 ► Change .endablePolicy to FALSE. If you leave this as TRUE, the device will go into

standby instead of performing the delay function in main(). Also, in later labs, when we use

a timer interrupt set for 500ms, the device will go into standby and mess up our labs. So, for

EVERY lab, make sure .enablePolicy is set to FALSE.

11. Peruse the Project folder in Windows.

 As discussed in the chapter, whenever you add (copy) files to your project, CCS will make a
COPY of that file and place it in your project folder. So, the Project Explorer view in CCS is
basically showing you the exact folder/file structure in your Windows filesystem.

 ► Using Windows Explorer, locate your project folder:

 C:\TI_RTOS\Target\Labs\Lab_02\Project

 Do you see main.c? It should be there. Do you see the .lib file/folder? Tiva-C anc

CC2650 users won’t see it because they LINKED their library. C28x/MSP430 users will see
the folder they imported – and C6000 users don’t have any extra files. Notice the other files

and folders in the \Project folder – these contain your project-specific settings.

 After you BUILD your project, which folder will be added? _______________ If you don’t
know yet, well, stay tuned.

12. Build your project using “the hammer” and check for errors.

 At this point, it is a good time to build your code to check for any errors before moving on.

 ► Just click the Build button – a.k.a. “the hammer”:

 If you have any errors, try to fix them. After an error-free build, ► go take a look at your

project folder again in Windows Explorer – is there a new folder? Open the \Debug folder

and examine the contents – that’s where the .OUT and .MAP files are – amongst other files.

Lab 2 – Procedure

2 - 36 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Explore the Blink LED Code

13. Explore code in main.c.

 In this lab, we are using a simple blink LED program – the famous “hello world” for MCUs.
The goal in this workshop is to keep the code very simple and focus on concepts where you
will be able to learn valuable skills without huge/complex code getting in the way. So, we will
be blinking an LED (or two) throughout all the labs. If the LED blinks, well, your code probably
works. If it doesn’t blink – there is, most likely, a problem.

 We are starting with a program that does NOT use BIOS (except for CC2650 users). In the
next lab, you’ll be adding BIOS to this code. We will, by the end of the workshop, build a
more complex system – once piece at a time.

 ► Open main.c for editing and peruse the whole file. You will see the header files,

prototypes and global variables used. Each target’s main.c will be slightly different only

because the hardware to set up the LED is different. However, if you look in the main()

function, the while(1) loop is almost identical for all targets:

 If there is a watchdog timer present, we first disable it in the _init() routine. Then we perform
some setup for the hardware to blink the LED. Typically, this is done via a library call. In the
while(1) loop, we have three steps:

 Toggle the LED (via fxn or just one line of code)

 Delay function (usually the delay is about 1/2 second)

 Increment i16ToggleCount global variable (we’ll use this in a few ways later)

 Do it again…

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 37

Using the Target Configuration File

14. Open and analyze the Target Configuration File.

 Remember, the Target Configuration (.ccxml) file tells CCS how to connect to our target
board/device to debug a program.

 TargetConfig files are usually stored in one of two places:

 Inside the Project folder:

 For all MCUs projects (C28x, CC2650, MSP430 and TM4C), CCS automatically

creates a target config file (using the “connection type” you specified when creating

the project). You can see this under the TargetConfig folder in your project.

 The “User Defined” folder under Target Configuration View (View → Target

Configurations).

 You might remember we imported a generic, board-specific TargetConfig file into the

“User Defined” folder during Lab 1.

 Let’s explore the TargetConfig file we will be using for this lab exercise:

► Locate your target config file – either in your project (all
MCUs) or in the User Defined folder via View → Target
Configurations (C6000 only).

► Double-click to open. If you look at the bottom of the
screen, you’ll notice you are viewing the Basic tab.

In the Basic tab, notice the connection type (which you can
edit) and the board/device selection (again, you could edit
this if you like).

► Now click on the Advanced tab and ► click on the CPU
(as shown – your target and connection may vary).

 Notice on the right-hand side the “initialization script”. This is the GEL (general extension
language) file that runs when you “connect to target”. Often, it sets up the hardware clocks
(PLL), memories, and peripheral settings – etc. – as a convenience for you when using CCS
and a target development board. When you create a production system, these commands will
obviously need to be part of your boot/init routine.

 ► Close the Target Configuration File.

Sidebar

There are two ways to invoke the debugger:

 Click the Debug toolbar button .

 This launches the “Active” or “Default” TargetConfig file. For most users, this is the .ccxml file found in
your project. (Occassionally – and for all C6000 users – this is the last TargetConfig file which you
used.)

 Launch the debugger from the Target Configurations View (View → Target Configurations).

 Right-click the TargetConfig file from this view and “Launch Selected Configuration”. This starts the de-
bugger, but you must still manually connect to the target and load your program. This is how we ran our
code in Lab 1.

 When switching to a new project, C6000 users should always use this to invoke the debugger the first
time; after that, they can switch to using the Debug button on the toolbar.

Lab 2 – Procedure

2 - 38 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Build, Load, Run

There are four steps required to run code within CCS:

 Build (Compile, Assemble, Link) your code.

 Launch the debugger.

 Connect to your target board.

 Load your program.

 OK, the fifth step is actually hitting the “Run” button.

These steps can be invoked in two ways. We’ll start with the step-by-step method; afterwards,
we’ll show the ‘shortcut’ method.

Launching the Debugger step-by-step

15. Build your project and fix any errors.

Note: If you have more than one project open in the workspace, ALWAYS FIRST click on the
project you want to build before building. It is usually best to close any projects you are
not working on first to avoid the possible error of building the WRONG project. Get in the
habit NOW of first clicking on the project you want to build (it will be highlighted) and then
build. In future labs, you will have main.c in EVERY project. Do you really want to click on
the wrong main.c and edit it? Nope. So, do yourself a favor and close any previous
projects AND click on the project you’re working on first before building/loading/running.

 ► Build your project by right-clicking on your Project and selecting Build Project:

 ► Or, by hitting the HAMMER:

 ► Fix any errors that occur.

16. LAUNCH a debug session.

 ► Select View → Target Configurations. Make sure the target config file you imported in the
previous lab is shown under User Defined.

 ► Right-click on this target config file and select:

 Your perspective will change to the Debug perspective and a few notes may be sent to the
Console window.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 39

17. CONNECT to your target board.

 ► Connect to the Target via Run – Connect Target:

 ► Or via the Connect Target button:

 If your TargetConfig specifies a GEL file, this is when it runs – so you may see a few more
comment lines in the Console window. If the error “cannot connect to target” appears, the
problem is most likely due to:

 wrong board/target config file or both – i.e. board does not match the target config file

 wrong target bad/wrong GEL file (rare, but it can happen)

 bad USB cable

 Windows USB driver is incorrect – or just didn’t get enumerated correctly

Hint: Later on when you’re using the “easy one button” approach to loading your program,
if see an error, we recommend going back and launching the debugger using these

three discrete steps. It can often help you deduce when/where the problem occurred.

18. Load your program.

 ► Load your program via Run → Load → Load Program or via the download button:

 When the dialog appears, ► select Browse Project and navigate to the

Project\Debug\target.out file.

Hint: The reason to use Browse Project is that the default .out file that appears is often

NOT the .out file you want.

If you get into the habit of using Browse Project, it will default to the active project

which is usually what you want.

 ► Select your .out file (in the \Debug folder) and click Ok twice. Your program will now

download to the target board and the PC will auto-run to main() and stop as shown:

Lab 2 – Procedure

2 - 40 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

19. Run your program.

 Now, it’s finally time to RUN or “Play”. ► Hit the RESUME (Run) button:

 The LED on your target board should blink. If not, attempt to solve the problem yourself for a
few minutes … then, ask your instructor for help.

 To stop your program running, ► click SUSPEND (Halt):

Hint: Suspend is different than Terminate !!!

If you click the Terminate button, the debugger – and your connection to the target – will
be closed. If you’re debugging and just want to view a variable or memory, you will have
to start all over again. Yes, this is very irritating. Remember to pause and think, before
you halting your program.

Terminate

20. Terminate the debug session.

 OK, this time we really want to terminate our debug session. (This way, we can start up the
debugger again … the easy way.)

 ► Clicking the red TERMINATE button:

 This closes the debug session (and Debug Perspective). CCS will switch back to the Edit
perspective. You are now completely disconnected from the target.

Build, Load, Run … again

Here’s the “easy button” (i.e. one button) method for debugging your code.

For MCU users, this is extremely simple. And the SECOND launch for C6000 users is just as
easy. (And, this will be the second time you will be debugging this program.)

21. Rebuild and Reload your program – the one-step method.

 ► First, make sure you terminated your debug session and your project is highlighted (in
scope) by clicking on the project.

 ► Then click the BUG button:

 This Debug button performs the same 4 steps we just completed:

 Builds the program (if needed); Launches the debugger; Connects to Target; Loads program

 Once the program has successfully loaded, ► run it.

Sidebar

CCS stores the previous launch/connection info in a hidden project folder called .launches. This is
how CCS projects know which target to connect to … the second time they are invoked. (MCU
projects also use this feature, but usually work fine the first time they are invoked.)

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 41

Add a Breakpoint

22. SUSPEND (Halt) the debugger.

 Do you end up with a weird file that cannot be displayed? If not, run and halt a few times and
something like this may show up.

Often, this happens because the processor was
halted in a section of code where the CCS debugger
cannot find the associated source code. This
frequently means that you halted in the middle of a
routine from a binary object library.

23. Add a breakpoint in your code.

 Breakpoints are very useful debug tools. Besides helping us to halt execution within a specific
source file (to solve our previous problem), they also allow us to halt in a location where we
may want to view a variable’s value (which we’ll do soon).

 Let’s add breakpoint and then run to it.

 ► Click into the main.c file, if you’re not already halted there.

 In the column next to the increment of toggleCount, ► double-click to add a breakpoint:

 ► Click RESUME (Play). The PC should stop at this line. This should happen each time you
hit RESUME.

24. Single-step your program.

 Breakpoints are handy, but sometimes you want to view code execution after every line of
code – doing this with breakpoints would be very tedious. This is where single-stepping a
program comes in handy.

 ► With the program suspended, click the Step Over (F6) toolbar button (or tap the F6 key):

 Resume Suspend Terminate Step Into Step Over Step Return Restart

 Notice how one line of code is executed each time you click Step Over; in fact, this action
treats functions calls as a single point of execution – that is, it steps over them. On the other
hand Step Into will execute a function call step-by-step – go into it. Step Return helps to jump
back out of any function call you’re executing.

Lab 2 – Procedure

2 - 42 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Watch Variables and View Memory Contents

25. Hover over a variable to view it’s information & value.

 ► Hover over the varible i16ToggleCount in main(). After a few seconds, you should see an
information box pop up and show its value.

 What is the value? __________

26. View/Watch variables.

 ► Double-click on i16ToggleCount in main() to select the variable.

 ► Right-click on the selected variable and choose:

 ► Click Ok. Do you see i16ToggleCount in the list? What is the value? __________
 Is it the same as the previous step?

Hint: If the variable is not selected when you right-click and choose “Add Watch
Expression…”, you will have to type the name into the dialog – which is not as easy
as selecting the variable first.

Note that you can add any expression to a Watch entry. For example, this means we

could have the watch window show the value of: i16ToggleCount * 3

27. Viewing memory...

 Does i16ToggleCount live somewhere in memory? Of course it does. You can see the actual
address in the expressions view. But let’s go see it in a Memory Browser window.

 ► Select View → Memory Browser:

 ► Type “&i16ToggleCount” into the memory window to display i16ToggleCount in memory:

What does the “&” mean?

What happens if you forget to
use it? (Yes, you see it’s

address, rather than it’s value.)

► Try changing the memory
windows format from:

“16-bit Hex – TI Style”

What changes when you do
this?

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 43

Other Useful Debug/Editing Tips

28. Ever wanted to know how much RAM/FLASH your application is taking?

 New, in CCSv6 is a Memory Allocation View. Very cool.

 ► Select: View  Memory Allocation

 And you will see a report similar to this one:

 The author has yet to determine how these numbers are generated, but they are probably
sniffed out of the .map file based on section allocations. Very handy report for many users.

29. Viewing CPU registers...

 ► Select View → Registers and notice you can see the contents of all of the registers in your
target’s architecture. Sometimes quite handy when debugging.

30. Try using the Quick Access toolbar.

 Sometimes, you just can’t find what you’re looking for in CCS – too many options floating
around. Quick Access is the “google search” of CCS options. Let’s say you wanted to know
where those “linked resource” variables are stored in the workspace. Well, if you go through
the optional lab at the end of this chapter, you’ll find out. But just to try it out…find the Quick
Access toolbar in the upper right- hand corner of CCS:

 ► Type “Linked Resources” into the toolbar and click on the answer. What do you see?

31. Restart your program.

 We can simply restart our program without exiting the debugger. This will restart execution of
our program and run to main; similar to when we loaded our program.

 ► Select Run → Restart or click the Restart button:

Lab 2 – Procedure

2 - 44 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

32. Introduce an error in the code.

 Do NOT terminate or close your debug session.

 ► Switch back to the Edit perspective and remove the semicolon (;) from the call to

ledToggle():

 ► Go ahead and rebuild your project. When you see the error report:

► Expand it and double click on the error.
CCS will take you to or near the error.

► Replace the semicolon and watch the
question mark disappear. Nice.

33. Make the delay 2x and rebuild/run.

 ► Modify the delay function to 2x the time delay and rebuild. Notice that, because you
already have a debug session open, if the program builds correctly, CCS will
AUTOMATICALLY load the new program. If a dialogue appears, say Yes and check the box
to remember your decision.

Hint: Sometimes, CCS will ask you to terminate your debug session before “auto loading” the
newly built .out file or the new .out file won’t re-load properly. It will be obvious if either of

these occur. But most of the time, the auto reload works just fine.

 So, once you have a debug session open and you don’t switch projects, CCS will auto-load a
successfully built program after making any edits (except for MSP430).

 ► Run your program to see if the LED blinks slower. Whoops, you still have a breakpoint set.
No worries – just ► double-click the breakpoint again to remove it. You can also select View
→ Breakpoints and uncheck the breakpoint there.

 ► Now run again.

 Lab 2 – Procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 45

34. Want to know which file a function is declared in?

 All of the variables and functions in your program are INDEXED by CCS (Eclipse). Some very
experienced users of Eclipse recommend rebuilding the index every once in a while to assist
in the Open Declaration option working better/faster.

 ► Right-click on your project and select Index  Rebuild.

 ► Find a function call in main.c (from your xWare library), highlight it, then right-click on that

function and select Open Declaration.

 Did CCS find the function? Very handy little trick. Later, you can use this to find declarations
for TI-RTOS function calls.

35. Let’s move some windows around and then reset the perspective.

 Using the Edit perspective, ► double-click on the tab showing main.c:

 Notice that the editor window maximizes to full screen.

 ► Double-click on the the main.c tab again to shrink the window back to its original size.

 ► Left-click-drag the Problems window tab, drag it around and allow it to snap to another
location.

 ► Spend some time moving windows around in the Edit perspective.

 Now, we will introduce one of the most USEFUL menu selections in CCS, called RESET
PERSPECTIVE. Whenever you get lost or some windows seem to have disappeared in
EITHER perspective, you can reset the window arrangement to the factory defaults. Very
useful.

 ► Select: Window  Reset Perspective:

 and say “Yes” to the dialogue. Notice, the default Edit perspective shows the Resource
Explorer window, ► go ahead and close it.

That’s It. You’re Done.

36. Terminate your Debug Session and close your project (right-click, Close Project).

You’re finished with this lab. Please let your instructor know you’re done…like by
raising your hand and shouting “I’m DONE !!”.Then, proceed to optional parts of the lab

below covering Build Properties and Portable Projects. Or, help a neighbor with their

lab or watch your architecture videos - only if time permits….

[Optional] Exploring Build Properties

2 - 46 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Exploring Build Properties

37. Explore the properties of your new project.

 ► Right-click on your project and select Properties.

 ► Expand and then explore each of the areas we have listed below:

 Resource: This will show you the path of your current project and the resolved path if it is
linked into the workspace. Click on “Linked Resources” and both tabs associated with this.

 What is the PROJECT_LOC path set to? _____________________________________

 Are there any linked resources? If so, which file is it? ____________________________

 General: shows the main project settings including the Advanced Settings we skipped earlier.
Notice you can change almost every field here AFTER the project was created.

 Build → Target Compiler: These are the basic compiler settings along with every compiler
setting for your project. We will use some of these during other workshop labs.

 Feel free to click on a few more settings, but don’t change any of them.

 ► Click Cancel.

 [Optional] Exploring Build Properties

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 47

38. Explore Build Configurations.

 TI supports two default build configurations – Debug and Release. These are just containers
for build options (compiler and linker). You can change the settings of the default configs and
you can create your own build configurations if you like.

 The Debug configuration turns on symbolic debug and turns off the optimizer. These options
are ideal when you want to debug your program’s logic and be able to single step your code.

 The Release configuration typically turns off symbolic debug and turns on a medium level of
optimization. This configuration usually provides better performance and is more difficult (if
not impossible) to single step your code because you only have function-level visibility.

 ► Right-click on your project and select:

 Make sure the configuration is set to Debug.

 ► Right-click on the project and select Properties.

 ► Click on the Optimization and Debug Options categories:

 What optimization level is used (-O)? ___________

 Which debugging model is used? ________________________

 ► Click the down arrow next to Configurations and select the Release configuration:

 Opt level (-O)? _____________ Debugging model? _________________

 ► Switch back to the Debug configuration and then click cancel.

Tips – New Project Creation and Debug

2 - 56 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Tips – New Project Creation and Debug

New Project Creation – C28x

1. File  New  CCS Project. Then fill in all target-specific items including Connection type. Use “variant” to filter device list.

2. Project path: for TI-RTOS workshop labs, choose \labx\Project for your project location (do not use default workspace path)

3. Device Variant = controlSTICK – Piccolo F28069, Connection = Texas Instruments XDS100v1 USB Emulator

4. Project Template: For BIOS app, choose TI-RTOS  Kernel  Target  Minimal template. For non-BIOS app, use “Empty Project”

5. Next/Finish: If BIOS app, click “Next” to configure tools – choose latest tools: XDC, TI-RTOS, UIA. If non-BIOS app, click Finish.

6. File Mgmt: If necessary, delete main.c provided by New Project Wizard and add (copy) source files to project as directed in lab.

7. Linker Command File: Double-check that a linker.cmd file has been added already – e.g. TMS320F28069.cmd

8. Header Files linker.cmd: Add add’l linker.cmd file (if BIOS app, choose F2806x_Headers_BIOS.cmd from controlSuite)

9. ControlSuite Source files: Add controlSUITE source files – if TI-RTOS workshop lab, add folder \Eware_F28069_BIOS
(Right-click on project, select Import, expand General, choose File System, Next, browse to folder location, check checkbox)

10. Edit vars.ini: Modify vars.ini to match your exact controlSUITE path for CONTROLSUITE_F2806x_INSTALL = your path

11. Import vars.ini: if not already done once for workspace, import vars.ini by choosing File  Import  CCS  Build Variables,
then click Next, browse to vars.ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

12. Add Include Search Paths: right-click on your project, select Properties, select Build  Compiler  Include Options. Then use
your variable – CONTROLSUITE_F2806x_INSTALL – to add the following paths:

${CONTROLSUITE_F2806x_INSTALL}/f2806x_common/include

${CONTROLSUITE_F2806x_INSTALL}/f2806x_headers/include

13. Add Pre-defined Symbol: If BIOS project, right-click on project and select Properties. Select C2000 Compiler  Advanced Options
 Predefined Symbols, click the “+” sign to add a new NAME and type “xdc__strict” using TWO underscores “__”, click Ok.

14. Modify Boot Settings: open app.cfg, in the Outline view, click BIOS  System Overview  Boot, click “Add C28x boot…”
checkbox, set DIV setting = 18 to provide 90MHz clock. Save app.cfg.

 Shown below is a summary of the steps to create a new C28x project

 Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

New Project Creation – C6000
 Shown below is a summary of the steps to create a new C6000 project

 Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1. File  New  CCS Project. Then fill in all target-specific items. Use “variant” to filter device list (LCDKC6748)

2. Project path: for TI-RTOS workshop labs, choose \labx\Project for your project location (do not use default workspace path)

3. Device Variant = LCDKC6748, Connection = BLANK (will be chosen via User Defined Target Config File using EMU)

4. Use ELF Output Format: TI-RTOS for C6000 only supports ELF. Click Advanced Settings and change output format to ELF.

5. Project Template: For BIOS app, choose TI-RTOS  Kernel  Target  Minimal . For non-BIOS app, choose “Empty Project”

6. RTSC Settings: If BIOS app, click “Next” to configure tools – choose latest tools –XDC, TI-RTOS, UIA. Choose the proper platform
file (ti.platforms.evm6748) located at \xdctools_rev#\packages\ti\platforms. If non-BIOS app, just click Finish.

7. File Mgmt: If necessary, delete main.c provided by New Project Wizard and add (copy) source files to project as directed in lab.

8. Linker Command File: No add’l linker files needed.

9. Edit vars.ini: Modify vars.ini to match your exact PDK install path for PDK_INSTALL = your install path

10. Import vars.ini: if not already done once for workspace, import vars.ini by choosing File  Import  CCS  Build Variables,

then click Next, browse to vars.ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

11. Add Include Search Path: right-click on your project, select Properties, select Build  Compiler  Include Options. Then use

your variable – PDK_INSTALL – to add the following path:
${PDK_INSTALL}/packages

12. Add Driver Library: If CSL is used – no library is necessary

 Tips – New Project Creation and Debug

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 57

New Project Creation – MSP430
 Shown below is a summary of the steps to create a new MSP430 project

 Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1. File  New  CCS Project. Then fill in all target-specific items. Use “variant” to filter device list.

2. Project path: for TI-RTOS workshop labs, choose \labx\Project for your project location (do not use default workspace path)

3. Device Variant = MSP430F5529, Connection = TI MSP430 USB1

4. Project Template: BIOS app? Use TI-RTOS  Driver 5529 LP Example Empty template. Non-BIOS? Use “Empty Project”

5. RTSC Settings: If BIOS app, click “Next” to configure tools – choose latest XDC, TI-RTOS, UIA. If non-BIOS app, click Finish

6. File Mgmt: If necessary, delete main.c provided by New Project Wizard and add (copy) source files to project as directed in lab.

7. Linker Command File: Double check that the proper linker.cmd file has been added to your project.

8. Edit vars.ini: Modify vars.ini to match your exact MSP430Ware path for MSP430WARE_INSTALL = your TI-RTOS install path

9. Import vars.ini: if not already done once for workspace, import vars.ini by choosing File  Import  CCS  Build Variables,

then click Next, browse to vars.ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

10. Add Include Search Path: right-click on your project, select Properties, select Build  Compiler  Include Options. Then use
your variable – MSP430WARE_INSTALL – to add the following path:

${MSP430WARE_INSTALL}/driverlib/MSP430F5xx_6xx

11. Add Driver Library: When using TI-RTOS, links for the driver library and include search paths is done FOR you. If not using TI-RTOS,

Link in the driver library code by doing the following: right-click on project, select Import, expand General, click

on File System and click Next. Browse to MSP430Ware location (same location as pointed to by your variable), choose the folder

MSP430F5xx_6xx (NOT the “FR” version), check this folder in the dialogue, check “create top-level folder”, click Finish.

12. Turn off ULP Advisor: Properties  Build  MSP430 Compiler  ULP Advisor, click None.

New Project Creation – Tiva-C
 Shown below is a summary of the steps to create a new Tiva-C project

 Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1. File  New  CCS Project. Then fill in all target-specific items. Use “variant” to filter device list.

2. Project path: for TI-RTOS workshop labs, choose \labx\Project for your project location (do not use default workspace path)

3. Device Variant = TM4C123GH6PM, Connection = Stellaris In-Circuit Debug Interface

4. Project Template: BIOS app? Use TI-RTOS Driver TM4C LP Ex Empty template. Non-BIOS app?, choose “Empty Project”

5. RTSC Settings: If BIOS app, click “Next” to configure tools – choose latest XDC, TI-RTOS, UIA. If non-BIOS app, click Finish

6. File Mgmt: If necessary, delete main.c provided by New Project Wizard and add (copy) source files to project as directed in lab.

7. Linker Command File: Double check that the proper linker.cmd file has been added to your project.

8. Edit vars.ini: Modify vars.ini to match your exact TIVAWare install path for TIVAWARE_INSTALL = your install path

9. Import vars.ini: if not already done once for workspace, import vars.ini by choosing File  Import  CCS  Build Variables,

then click Next, browse to vars.ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

10. Add Include Search Path: right-click on your project, select Properties, select Build  Compiler  Include Options. Then use
your variable – TIVAWARE_INSTALL – to add the following path:

${TIVAWARE_INSTALL}

11. Add Driver Library: Link in the driver library code by doing the following (for the main driverlib plus any other libraries needed:
add (link) the following file RELATIVE to your variable TIVAWARE_INSTALL:

${TIVAWARE_INSTALL}\driverlib\ccs\debug\driverlib.lib

Tips – New Project Creation and Debug

2 - 58 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

New Project Creation – CC26xx
 Shown below is a summary of the steps to create a new CC2650 project

 Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1. File  New  CCS Project. Then fill in all target-specific items. Use “variant” to filter device list.

2. Project path: for TI-RTOS workshop labs, choose \labx\Project for your project location (do not use default workspace path)

3. Device Variant = CC2650F128, Connection = Texas Instruments XDS110 USB Debug Probe

4. Project Template: Use TI-RTOS Ex CC2650 LP Driver Ex TI Driver Ex Empty Ex  Empty Project.

5. RTSC Settings: If BIOS app, click “Next” to configure tools – choose latest XDC, TI-RTOS.

6. File Mgmt: Delete empty.c, ccfg.c & empty.cfg provided by New Project Wizard and add (copy) source files to project as directed in lab.

7. Linker Command File: Double check that the proper linker.cmd file has been added to your project.

8. Edit vars.ini: Modify vars.ini to match your exact CC26xxWare install path for C26XXWARE_INSTALL = your install path

9. Import vars.ini: if not already done once for workspace, import vars.ini by choosing File  Import  CCS  Build Variables,

then click Next, browse to vars.ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

10. Check Power Policy: Open CC2650_LAUNCHXL.c and make sure (about line 102) that .enablePolicy is set to FALSE.

Checklist – When Things Go Wrong
 Shown below is a checklist you can use when you get build errors (build) or you are

unable to connect to the target (debug)

 Build Problems
1. Chose wrong device variant when project was created (open project Properties and modify)

2. C28x – did not include the additional linker command file for the header files (add file to project)

3. No include search paths or search path incomplete (check Properties  Build  Compiler  Include Options). Also
double-check entire path from the include search path specified plus the additional paths in your source files to make
sure the paths are correct.

4. If using variables and vars.ini to set linked resource and build paths, may need to edit and/or re-import vars.ini –
edit file, then select File  Import  CCS  Build Variables, browse to vars.ini and open

5. Forgot to add the driver library for your specific target and/or linked it improperly

6. Changed build configurations (Debug to Release) and forgot to copy all settings from one configuration to the other
(they are SEPARATE containers of build options)

7. Build does not seem to grab changes. Clean project (right-click on project, clean, then rebuild again).

8. BIOS: did not start w/BIOS template (re-create project using BIOS template and add source files)

9. BIOS: did not use updated BIOS/compiler tools (Properties  General/RTSC tabs, make sure latest tools are chosen)

10. BIOS: C6000 – forgot to specify platform file (Properties  RTSC tab, specify proper platform)

11. BIOS: runtime settings incorrect – double check BIOS  Runtime module in app.cfg

 Debug/Connection Problems
1. Windows messed up or general odd behavior (either perspective): Use Windows  Reset Perspective !

2. Used wrong target configuration file and/or GEL file (open project Properties or User Defined Target Configurations and
modify/relaunch)

3. “Bug” used for build/launch/connect/reload. This does not work sometimes – especially the first time. If you have
problems, perform each step individually to find the problem. Your previous connection is stored in the .launches
folder in your project directory. You can delete this folder and try the bug again. Or simply go through the steps ONCE
and then use the bug after that – because CCS should remember your “previous” launch steps.

4. Did not properly terminate previous debug session. This can cause any number of errors. Close CCS, power cycle the
board, relaunch CCS and relaunch debug session.

5. Workspace may be corrupt. Switch workspaces using File  Switch Workspace.

6. BIOS Runtime: use ROV to see the state of any problem area including stack overflow

 Tips – New Project Creation and Debug

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2 - 59

Troubleshooting Checklist – For More Info
Shown below are several wiki pages that may help you debug your

problem beyond the typical errors talked about on the previous pages…

 BIOS Debug Tips
http://processors.wiki.ti.com/index.php/DSP_BIOS_Debugging_Tips

 Debugging Boot Issues
http://processors.wiki.ti.com/index.php/Debugging_Boot_Issues

 Debugging CCSv5 Projects
http://processors.wiki.ti.com/index.php/GSG:Debugging_projects_v5

 Troubleshooting CCSv5
http://processors.wiki.ti.com/index.php/Troubleshooting_CCSv5

 Debugging JTAG Connectivity Problems
http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems

 CCS FAQ
http://processors.wiki.ti.com/index.php/CCStudio_FAQ

 For More Info…

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3 - 23

*** this page is missing very important details… ***

Chapter Quiz

3 - 24 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Chapter Quiz

Again – this is probably best explained live or via the online video, but we will do our best in print
to describe this.

This is a basic block diagram of a motor control system. This will be used as a basis for the
upcoming quiz. The goal is to pick a BIOS thread type for each block shown below.

This system uses two PID algos to control speed and position of the motor. Along with the algos
for PID, there are four other threads needed – Keypad, Host, LED and System Maintenance.

The table on the next page has some missing pieces which relate to the priorities and thread
types of the PID algos (speed and position) plus the four other thread types.

Use this diagram and then fill in the missing pieces in the table shown…

Quiz – Block Diagram

PWM P

CPU

Keypad

Host

LED

Motor

Bridge

Sensors

Position

Speed

Sys
Maint

Basic Motor Control System

 Goal – Control motor speed/position
via PID algo based on ADC info and
output control to PWM

 Other services include: Keypad, LED,
Host, System Maintenance

Quiz

 Fill in the missing info in the tables
(next page) regarding HOW to
schedule the threads in the system

 Think about Priority and the TYPE of
BIOS thread you would assign to each

S/W

H/W

PWM S

ADC S

ADC P

I2C

I2C

GPIO

PIDx2

See the following facing page for the table you need to fill out…

 Chapter Quiz

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3 - 25

Quiz – Fill in the missing pieces…

Hwi’s S/W function BIOS Thread Type S/W Priority?

ADC_P_ISR PID_Position High -

ADC_S_ISR PID_Speed

Host_ISR Host_Cmd_Proc Med -

Keypad_ISR Keypad_Read Low -

LED_blink_ISR LED_toggle

Sys_maint Lowest -

System Threads

 Hwi’s: triggered by interrupt, ISR called via BIOS Hwi.

 S/W function: called by “BIOS Thread Type” (e.g. Swi 5 calls PID_Position)

 BIOS Thread Type: choices are – Hwi, Swi, Task, Idle

 S/W Priority: Swi (0-15/31), Task (0-15/31), Idle (0)

Bonus Question
If you had ONE timer and needed to run 5 different threads based off that timer,
how would you accomplish this?

Click for ALL answers...

There truly is no real wrong answers here. You know the PID algos should be higher priority (see
the hints above) and other threads have hints as to what their priorities might be. Which BIOS
thread types would you use for each thread and once you pick a thread type, which priority would
you assign to those threads?

Chapter Quiz

3 - 26 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Quiz - Solution

Quiz – One “Solution”

Hwi’s S/W function BIOS Thread Type S/W Priority?

ADC_P_ISR PID_Position Swi High – Swi 5

ADC_S_ISR PID_Speed Swi Swi 3

Host_ISR Host_Cmd_Proc Task Med – Task 5

Keypad_ISR Keypad_Read Task Low – Task 3

LED_blink_ISR LED_toggle Task Task 2

Sys_maint Idle Lowest – Idle

System Threads

 Hwi’s: triggered by interrupt, ISR called via BIOS Hwi.

 S/W function: called by “BIOS Thread Type” (e.g. Swi 5 calls PID_Position)

 BIOS Thread Type: choices are – Hwi, Swi, Task, Idle

 S/W Priority: Swi (0-15/31), Task (0-15/31), Idle (0)

Bonus Question
If you had ONE timer and needed to run 5 different threads based off that timer,
how would you accomplish this? Use BIOS Clock Functions.

Multiple answers are possible – this is just one possibility. But this gives you the idea. Of course,
answers that include Sys_maint higher priority than PID_Speed may need a little more
thought…

 Lab 4 – SYS/BIOS Blink LED

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 17

Lab 4 – SYS/BIOS Blink LED

In this lab, you will create a new SYS/BIOS project from scratch and extend your CCSv6 skills as
well as dive into configuring a SYS/BIOS project.

This project starts with the same code as the previous lab so that students can see exactly what
is necessary to add SYS/BIOS to a NON-BIOS application.

The key changes you will make are:

 Creating a SYS/BIOS project and configure BIOS using the .cfg GUI editor

 Replacing the while(1) loop with BIOS_start()

 Deleting the call to ledToggle() in main(). (ledToggle() will be called from the

BIOS Idle thread)

 Adding an Idle thread to the project and registering ledToggle() as an Idle function

You will then add UIA/SA to the project and use Log_info() to display how many times

the LED was toggled.

Lab 4 – Blink an LED Using Idle

main() {

init_hw();

…

BIOS_start();

}

main.c

Hwi

Scheduler

Swi

Idle

ledToggle() {

toggle(LED);

delay(500ms);

Log_info();

}

Procedure
• Create a new BIOS project (Minimal)

• Add/link files (main.c, driverlib/folder)

• Create Idle object (for fxn ledToggle)

• Build, “Play”, Debug

• Add UIA/SA to project and configure

• Use Log_info() to print #toggles

while(1) {}

while() loop
replaced by Idle

 Time: 60min

Lab Goal:
This is your first TI-RTOS Kernel
project – and you just want to
blink an LED in Idle

Lab 4 – Procedure

4 - 18 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 – Procedure

Typically when you first acquire a new development board, you want to make sure that all the
development tools are in the right place, your IDE is working and you have some baseline code
that you can build and test with. While this is not the “ultimate” test that exposes every problem
you might have, it at least gives you a “warm fuzzy” that the major stuff is working properly.

So, in this lab, we will start with the previous lab’s solution and add SYS/BIOS to it.

Create New blink_target_BIOS Project
1. Close all previous projects in CCS – right-click – Close Project.

2. Create a new CCS Project using TI-RTOS.

 Go through the steps of creating a new CCS project as you did in the previous lab – you may
need to reference those steps now. Note the following:

 Name: blink_target_RTOS (where target is YOUR target – as before –

either C28x, C6000, CC2650, MSP430 or TM4C)

 Location: C:\TI_RTOS\”Target”\Labs\Lab_04\Project

When the New Project Wizard pops up,

► fill in the top half of this dialogue the SAME WAY you did last time including the Device
info and Connection type. The example for TM4C is shown below – make sure you pick the
selections based on YOUR target platform. The author will remind you a few more times,
then will assume this will be crystal clear in future labs.

 In the bottom half of the dialogue, there are several correct choices. CC2650, MSP430 and
TM4C users will use the Driver Example and C6000/C28x users will use Kernel Examples.
So, pay close attention to the different instructions for each target on the next page…

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 19

 CC2650, TM4C and MSP430 USERS – Choose Driver Example Template shown below:

 ► Choose Empty Project as shown above in the TI-RTOS Driver Examples folder. MSP430
users will have a similar folder structure as shown above.

 As stated previously, this will provide you with the driver library links/includes as well as a
BIOS CFG file – empty.cfg. You will also get some extra .c and .h files you will delete
later.on.

 ► Click Next…

C6000 and C28x USERS – Choose the Kernel Example Template shown below:

 ► Choose Minimal as shown above in the TI-RTOS Kernel Examples folder. C6000 users
will have a similar folder structure as shown above.

 As stated previously, this will provide you with a starter app.cfg file that you will add/subtract
services from.

 ► C28x USERS - Click Next…

C6000 USERS ONLY – Choose ELF output format.

► Click Advanced Settings and choose ELF binary format and then click Next…

Lab 4 – Procedure

4 - 20 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Note: FYI – Detailed project creation steps and debug tips for each architecture are
summarized at the end of the previous lab. If you have questions or want to double-check
your “new project creation” procedure, please refer to the slides at the end of Lab 2. UIA
(later in the lab), XDC and BIOS/RTOS versions basically come in “sets”. You can’t use a
really old version of XDC with a brand new version of TI-RTOS, etc. All labs in this
workshop require a MINIMUM version of XDC (3.30.01.25_core), TI-RTOS (2.0.0.22),
and UIA (2.0.0.28). As long as you have CCSv6.0 or later, or have downloaded the latest

“set” of these tools, you’re probably fine. But it would be wise to double-check this.

 ALL USERS - In the RTSC Configuration Settings dialogue,

 ► select the LATEST version of the tools loaded on your machine. Be careful to select the
LATEST version of XDC (which is easy to miss because it’s at the top of the screen) and TI-
RTOS – as shown below.

 Your system will probably have a newer version of the XDC and TI-RTOS tools than what is
shown below – again, choose the LATEST version you have. C6000 example shown below –
obviously, choose the TI-RTOS for YOUR TARGET:

 C6000 USERS ONLY

 Near the bottom of this dialog box, you must select a PLATFORM package. Choose the one
shown below:

 ALL USERS: ► Click Finish.

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 21

 Your project should look something like this (the example shown is for TM4C users – yours
may be slightly different):

 As you can see, using the TI-RTOS project template provided us with a starter CFG file and
possibly additional C/Header files (MSP430 and Tiva-C). Next, we will add the lab’s main.c
file and delete any other unnecessary files.

Project File Management
3. TM4C and MSP430 USERS – Delete unnecessary files from your project.

 ► Right-click on ALL .c, .h and .txt files in your project and select Delete.

 DO NOT delete the .cfg file or .cmd file. The extra files were populated as starter files for a

driverlib example. We will add our own main.c file in the next step, so we don’t need the

default one.

 When finished deleting files, your project should look like this (TM4C example shown):

4. C28x and C6000 USERS – delete main.c from your project.

 You will be adding this lab’s main.c in the next step. Another main.c was populated

automatically as part of the template.

 ► Right-click on main.c and select Delete.

 When finished, your project should look something like (C28x example shown):

Lab 4 – Procedure

4 - 22 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

5. CC2650 USERS ONLY – delete files, check Power Policy

 ► Delete empty.c and ccfg.c from your project.

 ► Open CC2650_LAUNCHXL.c and modify line 102 to set .enablePolicy to FALSE.

6. ALL USERS - Add main.c to your project.

 ► Add (copy) main.c from your \Lab_04\Files folder. This main.c contains the same

code as the previous lab plus some additional #includes necessary for BIOS projects to

build properly. We will inspect this file in one of the following steps.

7. Add (link) the appropriate driver library file/folder (same as the last lab) to your project.

 Hey – this is where CC2650, MSP430 and TM4C users say:

 “Really? No library to import? But I am using TivaWare or MSP430Ware or C26xxWare!”

 Yes, you are. But you chose the DRIVER Example template which auto populates the driver
libraries and include files FOR YOU. This is new in CCSv6 and TI-RTOS. So, be grateful.

 ► C28x USERS: must import the \EWare_F28069_BIOS folder this time.

 C6000 USERS: no library to import (because the PDK/CSL is used)

 CC2650, MSP430, TM4C USERS: no library to import

8. Add include search paths to your project settings.

 CC2650, TM4C and MSP430 users have NOTHING to do here.

 C28x USERS: ► Add the include search path to your project settings as in Lab2 – you

need to add TWO paths using the vars.ini variable.

 C6000 USERS: ► Add the include search path to your project settings as in Lab2 – you

need to add ONE path using the vars.ini variable.

 Do you remember how to do this? If so, go for it. If not, reference the steps from the previous
lab or the “helper” slides at the end of the last chapter’s lab for help.

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 23

9. C28x Users ONLY – add a pre-defined symbol for xdc__strict.

 There is a header file conflict in C28x when using TI-RTOS/BIOS. Apparently “uint8” is
defined twice. To avoid getting this error when you build, you must add a pre-defined symbol
for “xdc__strict” and this takes care of it.

 ► Open Project Properties, select C2000 Compiler  Advanced Options  Predefined
Symbols and click the “+” sign to add a new NAME.

 ► Type “xdc__strict” (that’s TWO underscores) as shown below and click OK:

Exploring & Editing BIOS Config File (.CFG)
10. Explore services in app.cfg.

 ► Open the BIOS CFG file (empty.cfg or app.cfg) for editing. CFG means your

project’s .cfg file (could be app.cfg or empty.cfg). When you do, you should have three

new windows pop up:

 Available Products (usually in the lower left-hand corner)

 Outline View (usually in the upper right-hand corner)

 Config or Edit window (in the upper middle of the screen)

 The Available Products window shows ALL BIOS services that you can
pick and choose from for your application. The Outline View (shown on
the right) displays the services actually USED (yours may look slightly
different). The Edit/Cfg window allows you to configure specific
services used in the CFG file.

 In this lab, we’ll be using all of these windows to add and configure
BIOS services.

 Notice that the CFG file contains a Task and also an instance of a

Task (e.g. task0). Tasks usually have functions associated with them.

 ► Click on the instance of the Task (e.g. task0) to see which

function it is using. (Or, make sure you click on “Instance”). That
function existed in the a .c file you deleted earlier. Because we don’t

have this function in our new main.c, this will cause a build error. So

we need to go delete the Task service…

Lab 4 – Procedure

4 - 24 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

11. Remove the Task service from your app.cfg file (CC2650 users won’t see this).

 ► Open your CFG file and then right-click on Task in the outline view and select “Stop Using
Task”:

Here, we are removing the Task service completely. You could also just delete the Task

instance (e.g. task0) – that would work as well.

► Save your CFG file.

12. Explore the .cfg script.

 Near the bottom of the middle screen, ► click on the cfg Script tab:

 This shows you the source script – the actual contents of the .cfg file. If you click on a

service, e.g. Hwi, it will show you the exact script that was used to add that module to the
configuration as well as any instances of this object. Feel free to click around some, but don’t
change anything. More on this later…

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 25

Additional Steps for C28x Users Only
13. C28x Users ONLY – add and modify the Boot service in app.cfg.

 If you are NOT a C28x User, SKIP THIS SECTION !!

 BIOS, by default, will set the frequency to 50MHz and disable the watchdog timer. However,
for the labs in this workshop, we set the clock frequency to 90MHz so why not tell BIOS to set
this frequency at boot time as well? It is not necessary for the labs to run, but it is good
practice for C28x users to know how to use the Boot service in BIOS. So, time to practice
this…

 ► Double-click on your app.cfg file. ► Click on BIOS in your outline view:

 ► Click on System Overview:

 ► Click on Boot:

 ► Click on “Add C28x Boot …” checkbox at the top and then modify the “PLL Control
Register-DIV” setting to be 18 instead of 10. This should result in a 90MHz frequency at boot
time. Now, this matches what our code sets up in main() also.

 ► Save your .cfg file.

Lab 4 – Procedure

4 - 26 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

14. C28x users ONLY – add additional header linker.cmd file.

 In the previous lab, C28x users had to add an additional linker.cmd file to the project – it

was named F2806x_Headers_nonBIOS.cmd. Now that we are using BIOS, we need to

add the OTHER .cmd file listed there:

 ► Add (copy) this command file to your project (note the path variable from vars.ini is used):

 “CONTROLSUITE_F2806x_INSTALL”\device_support\F2806x\v1xx\F2806x_headers\c

md\F2806x_Headers_BIOS.cmd

 ► Double-check that you imported the \EWare_F28069_BIOS folder in this lab. The

previous folder (from lab 2) only works for non-BIOS applications.

Build, Load and Run.
15. Build, load and run your project and fix any errors.

 ► Build your project and fix any problems – then run it.

 At this point, your program should build and run fine. We are just trying to eliminate any
errors before we start playing with the BIOS pieces. If your project does not build or your LED
does not blink, debug the problem. If you need help, ask your instructor.

16. Inspect the contents of main.c.

 ► Open main.c. This code is nearly identical to the previous lab with the addition of some

BIOS header files near the top. You are now ready to edit this file to implement the

ledToggle() function as an Idle thread in BIOS.

 But first, think about what we’re trying to accomplish. BIOS is an operating system that

controls the scheduling of your threads. A while() loop in main() doesn’t work any

longer…

 Now answer a few questions:

 Should you keep the while(1) loop in main() in a BIOS program? Why/why not?

 __

 Which thread takes the place of the while(1) loop in a BIOS program? _______________

 Who calls ledToggle()? _____________________

 When ledToggle() becomes an Idle thread, there is no direct call (that the compiler can see)

to ledToggle(). If you turn on higher forms of optimization, what might happen?

 Which call in main() is missing that starts the BIOS Scheduler? ___________________

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 27

17. Modify main.c to use the BIOS scheduler.

 Next, we will delete the while() loop and move the delay() function and

i16ToggleCount increment to the ledToggle() function. The concept here is that BIOS

will call ledToggle() from the Idle thread and implement toggling the LED and the delay.

 First, let’s move the delay() call and i16ToggleCount variable to the ledToggle()

function (C28x example shown below – your code might look slightly different).

 ► Copy and paste the call to delay() and the increment of i16ToggleCount to the

ledToggle() function near the bottom of the ledToggle() function as shown:

 ► Now, delete the while() loop in main() and the call to ledToggle() leaving ONLY the

call to hardware_init() as shown:

 What is the BIOS call that starts BIOS? BIOS_start() of course.

 ► Add this call to main() as shown:

 Without BIOS_start(), NOTHING works. When BIOS starts, it will always run the highest

priority pending thread in the system. If we have no Hwi, Swi or Tasks in the system, which
thread will run immediately? ___________

 And when Idle runs, which function will it call? _________________

 When ledToggle() returns, which thread will run? ________________

 Ok, this is a circular discussion… 

► Save main.c.

Lab 4 – Procedure

4 - 28 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Register ledToggle() as an Idle Thread Function
18. Add Idle object to .cfg file.

 Configuring static BIOS/RTOS objects is a 4-step process:

a) Indicate you want to USE a module (e.g. Hwi or Semaphore or Idle)

b) Create an INSTANCE of that module (e.g. add a new Hwi or Semaphore)

c) Configure that instance (e.g. name of the Hwi or Semaphore and add’l params)

d) Include a proper header file to your code (if needed)

e) In our case, we want to USE the Idle Module and then configure it to call our

ledToggle() function when it reaches the Idle thread (the background loop).

Because we are STATICALLY configuring our objects (for now), we’ll use the
available GUI vs. creating it dynamically.

 ► Double-click on your .cfg file to open it. Notice the Outline View that displays the BIOS
modules included in your build.

 First, under the heading Scheduling in the Available Products window,

 ► right-click on Idle and select “Use Idle” OR, simply drag/drop Idle from here into your
Outline view.

 The Idle module will now show up in the outline view (on the right). FYI – the author likes the
drag/drop capability of these modules the best…FWIW…

 ► Click on the cfg Script tab to see the script that was added to the .CFG file for Idle. Cool.
Now it’s time to configure the Idle thread…

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 29

19. Configure Idle thread to call ledToggle().

 ► Click on the TI-RTOS tab (next to cfg Script). This should bring up the configuration box for

the Idle module. All we have to do is type in the name of the function(s) we want to run during

the Idle thread (BIOS’s version of the while(1) loop).

 ► Type in the ledToggle function name into the first slot:

 If you have 3 Idle functions and you want them to run in order, place them here in the order

you want them to run. They will then run in a round-robin fashion. If you want to

GUARANTEE the order, then use one Idle function that calls the three functions in order.

 ► Save the BIOS CFG file. If you’re curious, you can select the cfg Script tab again and see

this function added to the script near the bottom.

Explore BIOS’ Sys Overview and Runtime Cfg
20. Explore BIOS’ Graphical System Overview

 Some users like to see “the whole picture” of what is configured in their system graphically.

 First, ► click on the TI-RTOS tab (at the bottom) so we exit the viewing of the script code.

 In the Outline view of the .cfg file, ► click on the BIOS module and then click on the System

Overview tab. You will see the green checkmarks indicating which services are configured in
your system. These should match the Outline View.

 For now, we’re using defaults and just get BIOS working. Later, we will optimize the system.

21. Explore BIOS’ Runtime Configuration

 In the BIOS module, ► click on the Runtime tab. This is the KEY place to change global
settings for your BIOS project. The Tiva-C example is shown – your settings may look slightly
different (screen capture shown on the next page…)

Lab 4 – Procedure

4 - 30 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

 BIOS  Runtime Example for Tiva-C (your settings might look different):

 SYS/BIOS library type – In the latest BIOS tools, Custom (Optimized) is the default –
your build times increase because the BIOS source files are compiled optimally prior to
your application code. ► Leave the default setting as is.

 Threading Options – ► make sure each of these are checked. If not, stuff might not work!

 Dynamic Instance Creation Support – the default is dynamic creation/deletion. This
covers STATIC also. This is the proper all-encompassing setting. If you have a STATIC-
only system, you can save some footprint by unchecking this box.

 Runtime Memory Options – this is where you can modify the stack and heap settings for
your SYS/BIOS project. ► Make stack = 1024, ► heap = 0

 Platform settings – This is where you tell BIOS how fast your processor is running. When
we use the Clock module in a future lab, this becomes a CRUCIAL setting. If you want
BIOS to configure time-based activities in your system, it has to know how fast your
processor is running. ► Leave whatever default yours is set to.

► Did you modify the settings as suggested in the above paragraphs?

► Save your CFG file.

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 31

Build, Load, Run
22. Inspect main.c header files.

 We are now using TI-RTOS (BIOS), which will need some header files. Take our word for it
that mixing an xWare (like ControlSUITE or TivaWare or MSP430ware) with BIOS can
sometimes cause conflicts between interrupts, timers, etc. because these libraries sometimes
stomp on something BIOS is already doing or vice versa. Interrupt and timer code is the
biggest “stomping ground”. (We will cover these issues in later chapters). However, in the
latest release of the TI-RTOS SDK for MSP430 and TivaWare, these conflicts are no longer a
problem. The xWare libraries for MSP430/Tiva-C are “BIOS-aware” – thank goodness.

 However, the C6000 and C28x versions of xWare (CSL and header files respectively) have
no awareness of BIOS and therefore there is less protection built in. This is why C28x users
have had to import the author’s version of the header files because protection against code
running that ruins the BIOS enviornment has been handled in those files (C28x users can
read the readme.txt file in the \EWare folder for more info on this).

 ► Open main. Notice that the BIOS header files come before the xWare header files. In

general, this is a good programming practice. Read the comments of each BIOS header file.

23. Build, load and run your program.

 For MCU users, you can simply hit the bug to build/launch/connect/ and load your program.
For C6000 users, you need to first build your project (using the hammer), then perform the 3-
step launch/connect/load sequence like the previous lab.

 ► MCU users – just click the bug:

 ► C6000 users – build, then launch/connect/load your program.

 ► All users: Once you have loaded your program, ► click Resume (Run).

Did the LED blink? If so, move on. If not, debug the problem and after 2-3 minutes, if you
can’t find a solution, ask your instructor. Common mistakes are:

 Forgot BIOS_start() in main().

 Did not add the Idle module to your configuration (.cfg)

 Forgot to add ledToggle to the list of Idle functions.

 Still have a while(1) loop in main() and your code never reaches BIOS_start().

Lab 4 – Procedure

4 - 32 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Explore the RTOS Object Viewer (ROV)
24. Inspect the contents of the ROV tool.

 As stated in the discussion material, the RTOS Object Viewer (ROV) is a great debug tool
and provides visibility into the state of the scheduler, BIOS threads and memory objects. We
will use ROV throughout the labs and you can also use ROV to debug your own programs.

 First, make sure you are in the Debug perspective and your program is loaded and
suspended (halted).

 ► Select: Tools  ROV

 Down below, you will see a list of modules on the left. If you click on a module, you can see
the status of each BIOS module along with different tabbed views.

 The following “headings”, like “ROV-BIOS”, indicate the module to click on in the ROV to find
the answers (e.g. “BIOS). Some questions may require some exploring, but will allow you to
see the different types of data displayed by ROV.

 Let’s look at (click on) a few in particular to answer some questions. Please note that this
exercise is all about just perusing the contents of ROV – there are no wrong answers – just
click around and see what is there. All future labs will use ROV as well, so this is not the last
time you’ll see it…

 ROV-BIOS

 Are clocks, Swis and Tasks enabled? Yes No

 What is the frequency this processor is running at? _______MHz

 ROV-Hwi (Module/Basic tabs)

 What is the current size of the stack? _______ What was the peak used? _______

 How many Hwi’s are configured in your system? ________

 FYI – the “minmal” app.cfg services include the BIOS Clock Module implicitly. This uses a

timer and sets up an interrupt (Hwi) for you (that’s one of them). Also, inherent in every BIOS

application is the service Timestamp which also requires a timer and an interrupt. That’s the

second one. We will deal with these more in a later chapter…

 ROV-Idle

 How many Idle functions are there? 0 1 2

We will use ROV to debug and analyze many items in future labs. The point here is to

introduce you to the tool, provide a basic overview and show how to access its information.

MUCH more on this in future labs…

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 33

Add Unified Instrumentation Architecture (UIA) to
the Project
 As described in the discussion material, UIA is a utility that runs on the TARGET that

provides useful debug information such as Logs, Execution Graphs and Loading information.
UIA function calls store analysis data in buffers (in real time) and then display the data to the
user when they invoke the System Analyzer (SA) on the host PC within CCS.

 We only plan to use the STOP-MODE JTAG Event Upload Mode in this workshop, but other
modes supported by UIA/SA allow run-time transfer of analysis data via JTAG, UART and
Ethernet.

 We will use various capabilities of UIA/SA throughout all the labs. Here, we want to introduce
HOW to configure and use simple logging.

Hint: If you are familiar with the older stop-mode JTAG version called RTA, you may know that

the BIOS service “Agent” is used along with the buffer called “LoggerBuf”. If you have

existing projects with “Agent” in your .cfg file, this service has to be deleted before UIA

can be used. However, LoggerBuf can stay in the app.cfg file while using UIA. But

some edits to the CFG file are necessary depending on which template you chose –

more on this in the next few steps.

25. Add UIA to your app.cfg file.

 Well, here is where the whole TI-RTOS SDK makes things REAL easy. Why? The proper UIA
version is already paired with XDC and BIOS versions in the SDK. Tiva-C and MSP430 users
have NOTHING to do here – in fact, the empty.cfg already contains UIA and is ready to go.

 However, C6000 and C28x users, while UIA is already listed in Available Products
automagically, you will still have to add the service to the CFG file.

 ► Double-click on the .cfg file to open it (via the Edit perspective) and find the “Available
Products” window. Notice that Available Products contains the UIA Configuration service
called LoggingSetup:

 Again – MSP430 and Tiva-C users already have LoggingSetup in their CFG file. However,
CC2650, C6000 and C28x users have another step – adding this service - LoggingSetup – to
the CFG file.… (on the next page)…

Lab 4 – Procedure

4 - 34 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

 CC2650, C28x and C6000 USERS ONLY

 ► Add LoggingSetup to your.cfg file (right-click and select Use or just left-drag it into your

CFG outline View). It will then show up in the Outline View. If the config dialog doesn’t show
up, click on LoggingSetup to view it.

 We plan to use the default setup, so do NOT change any settings. The main configuration
options include:

 RTOS Execution Analysis – these options configure the Execution Graph

 RTOS Load Analysis – these settings are for CPU/Thread Loading

 User-written Software Instrumentation – these are settings for Logs – to capture the data

from a Log_info() call – the BIOS version of printf()

 Loggers – This sets the transfer protocol for the data. Notice that JTAGSTOPMODE is

chosen as the default.

 Logger Buffer Sizes – these buffer sizes affect HOW MUCH data is captured for Loads,

Graphs and Logs (as shown).

 ► Save your CFG file. Next, you will need to “kill” a little script code added by LoggerBuf
which conflicts with UIA.

 CC2650 USERS ONLY

 Almost all TI-RTOS projects using CC2650 have a script in the .cfg file that tells the linker to
use the BIOS libraries that are already in ROM. This is a great feature because it saves Flash
space.

 While Log_info() calls still work when ROM is enabled, other analysis tools like Execution
Graph and CPU load won’t work. SO, CC2650 users need to make an adjustment in the .cfg
file for these tools to work properly.

 ► Open your .cfg file and click on the “cfg Script” tab below the editing window.

 ► Comment out the following block of script code:

 This will allow the UIA tools to work properly. At some point, when you’re done using UIA in
the project, you can delete “LoggingSetup” from the .cfg file and re-enable the ROM.

 ► Save your .cfg file.

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 35

26. Kill LoggerBuf script code.

 C28x and C6000 users CFG file still contains a service called LoggerBuf which cannot be
deleted from the script code by deleting it graphically out of the Outline View (silly, but true).
However, the logger itself (the instance), logger0 can be. If you leave the script code in your
CFG file, you will get errors in your project – in fact, you may have already seen one pop up.

 ► Click on the tab “cfg Script” and find the following FOUR lines of script code:

 ► Comment out the four lines – as shown – in lines 83-86 (C28x example shown). These all
have to do with logger0.

 ► Then, comment out the following ONE line of script code:

 ► Save your CFG file.

27. ALL USERS – Add Log_info() to ledToggle().

 In the ledToggle() function, just beneath the increment of i16toggleCount, ► add the

following line of code:

 Log_info() calls require a header file.

 ► Add the following #include to your system (if not already done for you):

 ► Save main.c.

Lab 4 – Procedure

4 - 36 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

28. Enable Logs and check BIOS→Runtime Settings.

 Each time you create a project and add UIA, you must check these settings. TWO critical
areas of settings affect the workings of UIA:

1. BIOS  Runtime Enables

2. LoggingSetup settings

 You may have one right and the other wrong and then you’ll wonder why things aren’t
working. Then you send a msg to the e2e forum and you spend a few hours tracking one
checkbox down that you didn’t check. Sound familiar? Well, there are zillions of places this
can happen in an IDE (any IDE), so this is probably worth the price of admission to the
workshop. ;-)

 The settings in the BIOS  Runtime area differ depending on HOW you created your project.
So, it is always a good idea to check these first.

 ► Open your CFG file.

 ► Click on the BIOS module in your outline view.

 ► Click on Runtime near the top.

 ► Enable Logs and make sure the stack and heap sizes match below (stk = 1024, heap = 0):

 ► FYI – you can right-click on ANY setting and select HELP for more information about any
field. Very helpful. Try it now.

 Now, you need to make sure Logs are enabled in LoggingSetup.

 In your CFG’s Outline View, ► click on LoggingSetup and make sure the following is checked
(see the note about Log_print2 – this includes Log_info() calls – FYI):

 ► Save your CFG file.

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 37

UIA – Build, Load and Run.
29. Buid and load your program.

 ► Build and load your program.

 ► Click Run (play) and make sure the LED is blinking. After about 5 blinks, ► click Halt
(pause). We are using the mode “StopModeJTAG” so the processor must be halted to see
these results.

30. Use the RTOS Analyzer to view the UIA results.

 RTOS Analyzer is a front-end for the System Analyzer and a bit more simple to use.

 ► Select Tools  RTOS Analyzer  Execution Analysis:

 This will bring up the following dialogue allowing you to configure WHICH tools you would like
to see:

 By default, the Execution Graph and CPU Load should already be checked. If not, ► check
them now. The author always just chooses these two tools every time regardless of whether
they are needed. You see Printf logs are NOT checked. This does NOT affect the display of
Log_info() results…only actual printf() calls. There will be another window that is displayed –
called Live Session that will display the Log_info() results.

 ► Click Start, then click on the Live Session tab.

Lab 4 – Procedure

4 - 38 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

 The information that is displayed in the Live Session View contains every BIOS event in the
system along with a time stamp. Everything is kind of scrunched together, so we need to
somehow “justify” the columns so you can see everything clearly.

 To see all of the text, ► click the “Auto Fit Columns” button:

 Look in the Message column of the display. Notice you can see the Log_info() results

showing how many times the LED was toggled (“TOGGLED LED…”).

 While printf() takes 1000s of cycles/bytes of code on some processors, Log_info1()

requires only about 40 cycles – thus, not harming the real-time nature of your code.

 To see ONLY the Log_info() statements, you can filter the Raw Logs display.

 ► Click the “Filter” button:

 ► Then filter the list using the following settings and click “Filter”:

(results shown on the next page…)

 Lab 4 – Procedure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 39

 Your display should now only show the Log_info() results:

Look at the Time column on the left. This is the time stamp in NANOSECONDS – not cycles.

This can cause some confusion, but the accuracy is amazing. You would need to DIVIDE this
number by the number of nanoseconds in one CPU clock cycle to get the cycle number. The
previous tools in the older DSP/BIOS RTOS did not provide time stamps – just the results.
So, this is a great improvement.

Note: We chose not to open the Load and Execution Graphs in this lab because they don’t
report any useful data. CPU Load is defined as “time NOT spent in Idle”, so the CPU
Load graph will be zero because our program spends all of its time in Idle. Later lab

exercises utilizes UIA where it provides much more interesting and useful data.

For a further list of APIs supported in UIA/SA, download the System Analyzer User Guide –
SPRUH43E.

That’s It, You’re Done !!
31. Terminate your Debug Session. Close your project. Make sure all editing windows are

closed.

READ THIS:

Note: For all labs in this workshop, you will be using main.c and a CFG file in EVERY project.

Previous students have left open previous projects and edited the WRONG main.c or

CFG file and had problems. This is why we recommend CLOSING the current project so
that you avoid the confusion of multiple source files named the same.

Let the author tell this straight. If you do NOT close the projects each time and you
inadvertently modify the wrong file because you didn’t RTFM – read the FINE manual –
well, shame on you. Don’t waste the instructor’s time dealing with an RTFM issue. Got it?

 You’re finished with this lab. Please raise your hand and let the instructor know you are
finished. Maybe help a struggling neighbor get through his/her lab. Become the instructor’s

helper by helping a neighbor – hey, now THAT is a good slogan…or move on to the
optional lab below for MSP430 and Tiva-C users, or watch the architecture videos as
described earlier…or be really selfish and just check your email !

[Optional Lab 4B] – Blink LED for MSP430 and Tiva-C

4 - 40 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

 [Optional Lab 4B] – Blink LED for MSP430 and Tiva-C

Note: If you are a C6000 or C28x user, SKIP this optional lab and watch your architecture

videos. This lab only pertains to MSP430 and Tiva-C users…

If you are a Tiva-C or MSP430 user, there is a BIOS template you can use to blink an LED or set
up any of the TI-RTOS drivers in the TI-RTOS SDK. The template actually has commented code
to set up any of the peripherals in the TI-RTOS library – very handy starting place for MSP430
and Tiva-C users.

Be aware that this optional lab discusses concepts that will be explained in later chapters. But
hey, this is an OPTIONAL lab, so the author took the poetic license to share this with you before
he actually explains it. But, the concepts are simple enough that it won’t be too hard to follow…

32. Close all previous projects in CCS – right-click – Close Project.

33. Create a new “driver example” project using a template.

 ► Select Project  New CCS Project.

 ► Select the following template and fill out all the other info about your project:

 ► Click Next and make sure the latest TI-RTOS is chosen along with XDC.

 ► Click Finish.

34. Explore empty.c.

 ► Open empty.c for editing. The first thing you will notice is that this source file is NOT

empty. It is an example blink LED project that uses BIOS to blink an LED via a Task that runs
continuously.

 ► First, look at main(). You will see a few init calls followed by a TI-RTOS driver call to turn

ON the LED prior to BIOS_start().

 ► Look above main() to see the only Task in the system – heartBeatFxn(). Inside this

function is a while(1) loop that contains a Task_sleep() and the LED toggle fxn call.

 Where is the CALL to this function ?

 Well, it is NOT in main() – so who calls this Task? Oh, and another question, who is

sending the arg0 argument to this Task to set the sleep time?

 __

 [Optional Lab 4B] – Blink LED for MSP430 and Tiva-C

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4 - 41

35. Explore empty.cfg which is also NOT empty.

 Well, if you answered the previous questions by saying “BIOS calls this Task” and “BIOS
sends the argument to the Task” you get full credit for your answer.

 Tasks are ready when they are created. When is the Task created? During BIOS_init()

which runs BEFORE main(). So, when main() calls BIOS_start(), the highest priority

pending thread is executed by BIOS. So, heartBeatFxn() is called by BIOS and sent the

sleep argument (arg0) to tell the system to sleep for 1000 system ticks (which is set for 1ms)

– which means it will sleep for 1 second, wake up, toggle the LED again, then sleep…etc.

 ► Open empty.cfg. Inside the .cfg file, you can see the Task – heartBeatTask.

 ► Click on heartBeatTask to see how it is configured. Notice that arg0 is set to 1000. So,

when BIOS calls this Task right after BIOS_start(), the “sleepytime” will be 1000 system

ticks.

 For extra credit, which service is setting up the system tick? ____________________

 If you click on that service, you can see the configuration. This will all be covered in the
“Clock” chapter later on.

36. Where is the GPIO_write() command declared?

 A neat little trick in CCS is the ability to open the declaration of a function call – especially
one that is inside a driver library or BIOS.

 ► Hold down the Ctrl key and hover your mouse over the call to turn ON the LED in main():

 The GPIO_write() call turns into a LINK.

 ► Click it. It should open the file that declared this function. Way cool…

37. Build, Load, Run.

 ► Build, load and run the project. Make sure the LED is flashing at a 2s interval (on for a
second, off for a second).

 ► Then, go change arg0 to 500, rebuild and run.

 Notice that at the top of main(), you will see other TI-RTOS driver calls for UART, SPI, I2C,

etc. So, in essence, this is a template for use with any of the TI-RTOS drivers.

 When finished, ► CLOSE this new project.

 You’re finished with the optional lab. Go help a neighbor or watch some of your architecture
videos.

 Lab 5 – Using Hwi

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 17

Lab 5 – Using Hwi

In this lab, we added timer setup code to the hardware_init() function to produce an interrupt

on a specific timer every 500ms. Your goal is to set up a TI-RTOS kernel Hwi to respond to that
interrupt and toggle the on-board LED as we did in the previous lab.

Once again, you will need to create a NEW BIOS project using the Minimal app.cfg and then add
services to it.

Lab 5 – “Blink LED” Using Hwi

main() {

init_hw();

Timer (500ms)

BIOS_start();

}

main.c

Hwi

Scheduler

Idle

ledToggle() {

toggle(LED);

Log_info();

}

Procedure

• Create a new BIOS project (min)

• Add/link files (main.c, driverlib/folder)

• Add Hwi object (for timer interrupt)

• Build, “Play”, Debug

• Add UIA/SA to project and cfg/use

• Use Log_info() to print #toggles

• [Optional] – use BIOS Timer module

 Time: 30 min

0:00

Hwi ISR

Lab Goal:
Set up a timer in TI-Ware and
configure an Hwi to respond to
that timer interrupt

Lab 5 – Procedure

5 - 18 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 – Procedure

Yes, you’re going to create a new project – again. Repetition helps learning and there are some
pesky details we need to get right in order to create a project that builds. The more you do it, the
better you will get and the higher probability you will REMEMBER it.

After creating the project, you will configure an Hwi to respond to the timer interrupt. If your LED
blinks every second –you have success!!

Note: If you can’t remember how to perform some of these steps, please refer back to the

previous labs for help. All steps are summarized at the end of Lab 2. Or, if you really
get stuck, ask your neighbor. If you AND your neighbor are stuck, then ask the instructor

(who is probably doing absolutely NOTHING important) for help. 

Create a New SYS/BIOS Project

1. Close ANY open projects before continuing.

 There will be TOO MANY .cfg and main.c files running around. You will edit the wrong file

if you don’t close the older projects. So close any open projects – NOW.

2. Create a new TI-RTOS Project using the template used in the previous lab.

 Once again, if something is “fuzzy”, look back at the previous labs for help. Just as a
reminder though:

a. ► Name your project: blink_target_HWI (where target is YOUR specific target acronym).

b. ► Create your project in the Target\Labs\Lab_05\Project folder.

c. ► Don’t forget to choose your target device and connection properly.

d. ► MSP430, CC2650 and Tiva-C users – choose the Driver Example template (Empty):

e. ► C6000 and C28x users – choose the Kernel Example (Minimal):

f. ► C6000 Users: make sure to choose ELF as the binary format (advanced settings) and
then on the RTSC tab, select the proper platform file (evm6748).

g. ► ALL USERS – Make sure you select the LATEST tools installed on your PC – XDC
and TI-RTOS.

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 19

3. Perform file management.

 ► Delete the extra files populated by your template just like in the last lab.

 ► Add (copy) main.c from the Lab_05\Files folder (as you did before). Note that

main.c is DIFFERENT this time because it contains the timer setup code.

 ► Remove Task service if it exists in your .cfg file.

4. Add library files/folders and set your include search paths.

a. ► C6000/C28x users - link/import the appropriate driver library file or folder.

b. ► Add the proper include path(s) for the library header files using your install variable.

c. ► Perform any additional steps for your architecture – namely:

 C28x: add pre-defined symbol “xdc__strict”, add Boot to your .cfg file via BIOS (System

Overview), then make PLL Control Register DIV = 18 to achieve 90MHz. Don’t forget

to add the F2806x_Headers_BIOS.cmd file and import the \EWare_F28069_BIOS folder

(this is your “driver” code for ALL future labs)

 MSP430: disable the ULP Advisor

5. C6000 and C28x USERS – Check to make sure your linked resource and build
variables are set in the workspace.

 In the last lab, you imported vars.ini to set the linked resource path variables and the build

variables based on the install path of your “ware” – e.g. PDK_INSTALL or

CONTROLSUITE_F2806x_INSTALL.

 If you haven’t switched workspaces, these variables should still be set. Let’s go make sure
anyway…

 ► Select Window  Preferences and type “linked” into the filter field.

 ► Click on Linked Resources and check the paths.

 ► Then type “build” into the filter field and click on “Build Variables” and double-check the

paths. If everything looks good…move on…

6. Open your CFG file and make necessary changes.

 In the last lab, we modified some settings in the .cfg file and we need to do the same here

because we have a NEW .cfg file.

 ► Open your .cfg and make the following edits or verify the values (BIOS  Runtime):

 Stack size = 1024, heap size = 0

 Check the box next to “Enable Logs” (again, needed for UIA)

 Ensure all Threading Options (Tasks, Swi, Clock) are enabled.

 Ensure clock speed is proper for your target (it probably is fine)

C28x USERS – ► modify boot settings to use 90MHz (like the last lab)

► Save your .cfg file.

7. Build your project and fix any errors.

 ► Build your new project (don’t use the bug, just the hammer).

 At this point, your project should build fine. It won’t blink the LED yet because the Hwi is not
configured. We are just trying to verify the new project builds properly. If your project builds
clean, move on to the next step. If not, fix the build errors before moving on…

Lab 5 – Procedure

5 - 20 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Explore Source Files

8. Where is Idle?

 ► Open app.cfg and look at the outline view.

 Do you see Idle? Huh. Does that mean the Idle thread doesn’t exist any longer? Nope. Idle
ALWAYS exists. We just don’t need to explicitly add it to the list of services because we
aren’t configuring any Idle threads (like we did in the previous lab). Rest assured, that
background loop is always there (FYI – CC2650 users will see Idle in the .cfg file).

9. Explore new timer code in main.c.

 ► Open main.c and find the hardware_init() function.

 Near the bottom of that function, you will see the new TIMER init code. For example, here is
the one for C28x:

 ► Which timer is being used for YOUR target? ________________

 ► What is the timer period set to? _______________

 When you set up the Hwi, you need to know WHICH timer is being used. When the program
runs, the timer will tick down to zero and fire an interrupt. This becomes the SOURCE for the
BIOS Hwi. In the BIOS Hwi configuration, this interrupt source may be called “Interrupt
Number” or “Event Id”.

 In an upcoming step, we will show you how to find the specific NUMBER that connects the
timer source to the BIOS Hwi configuration.

 ► When the interrupt fires, which function do you want to run? __________________

Hint: BIOS adds two timers and two interrupts to your system implicitly – one for the BIOS
system tick and the other for the BIOS timestamp provider. This is an area where you
need to be careful about choosing ANY timer to use – it really depends on what your

driver library code initializes. If there is a collision, the best place to look is in ROV – Hwi.

Determine Interrupt Number or Event Id

10. Use the datasheet to determine the EventId or interrupt number for YOUR timer.

 Learning how to use the datasheet for a CPU is important. So, let’s look up the proper
number we need to signify the Timer interrupt we are using. Each architecture is VERY
different, so let’s take one at a time…

 The datasheets for your target are contained at:

 \TI_RTOS\Workshop_Admin\Processor_Datasheets

 ► Locate your specific datasheet now and open it.

 ► Follow the instructions for YOUR target processor on the following pages to determine
your Interrupt Number or EventId…

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 21

 C28x Users:

 On page 76, you’ll see a table of interrupts – i.e. your PIE table that looks like this:

 Kind of a different organization. But you can see that TIMER 0 is PIE Group 1 and INT 7 in

that group – or INT1.7 for short. But wait, you need a decimal number – like 14 or 49 – you
can’t use INT1.7 in the Hwi config.

 Well, there are four ways to figure out this number. In the slides, we already showed you a
number – 38. But that is cheating. You can also find this info referenced in the SysCtrl and
Interrupt Reference Guide.

 Another way to determine this is – first assume that INT numbers 0-31 are “reserved” or
“taken”. Now look at the table on page 76 and start counting (from the right) at 32 with
INT1.1. INT1.2 would be 33…and so on…making INT1.7 = 38.

 The last way to figure this out is to use two tables – the one on page 76 of the datasheet
matched up with the one in the BIOS help guide in CCS.

 ► In CCS, select Help  Help Contents and then click on the following (list was edited):

 ► Click on Hwi and scroll down to see a new table:

 Well, of course, it’s organized differently!! Some groups at TI just don’t communinicate well,
eh? Never happens at your company I’m sure. ;-) So, you can see that INT1.7 = 38 again.
FYI – BIOS uses Timer 1 for the clock tick and Timer 2 for the TimeStamp. That’s why we are
using Timer 0 for this lab. Want to know more about these bits? Take the C28x workshop !!

 ► C28x – WRITE DOWN YOUR INTERRUPT NUMBER HERE: _________

PIE 1

Lab 5 – Procedure

5 - 22 Intro to the TI-RTOS Kernel Workshop - Using Hwi

 C6000 Users:

 On page 91-93, you’ll see a table of interrupt sources with the Event # on the left and the
interrupt name in the center:

 Timer 0 is can be configured as a 64-bit timer, 2 32-bit timers or 4 16-bit timers – hence the
“12” and “34” 32-bit timer designations.

 If you open main.c and look at the hardware_init() function, you’ll notice which timer is

being used – Timer 0 (3:4) is set to a delay of ~500ms based for a 300MHz CPU clock
frequency – not that easy to tell but doesn’t 0xF0000 mean 500ms? Of course. 

 FYI – Timer 0 (1:2) is used for the System Tick (which will be explained later). This is why we
are using Timer 0 (3:4) in this lab.

Note: If using the OMAP-L138 LCDK, use Timer 1 instead of Timer 0. The ARM boot mode
uses Timer0, so it whacks the Timer0 setup. These changes will apply to all future labs
as well. Event ID for Timer 1 is 48 vs. 64 and you must change the CSL code in the init
function in main.c to use:
CSL_TmrRegsOvly tmr0Regs = (CSL_TmrRegsOvly)CSL_TMR_1_REGS;

 ► C6000 – WRITE DOWN YOUR EVENT ID NUMBER HERE: _________

 ► C6000 Users – use CPU Interrupt #5 – Interrupt Id: _5_

 MSP430 Users:

 On page 21, you’ll see a table of interrupt vectors from highest to lowest priority. FYI – BIOS
has already stolen Timer A0, so we are going to use Timer A1 (CCR0) in the lab. Here is a
snippet from the datasheet:

 So, this one is rather easy. If you look in main.c, you will see that Timer_A1 is being set to

tick down every 500ms and trigger an interrupt. Interestingly, the nomenclature can be a bit
confusing here because the heading of the column says “PRIORITY”, but you will place the
number 49 in the “Interrupt Number” field in the Hwi config. This is when you say “thank
goodness I’m taking this class”. Well, common sense also dictates that this would be the
number because it’s the ONLY number in the darn table. 

 We are using an UP mode counter that uses the CCR0 register that counts up to the value in
CCR0, fires the interrupt and resets the timer counter to zero. So, 49 is the proper choice vs.
48. Want to know more about all the MSP430 Timers? Take the MSP430 Workshop !!

 ► MSP430 – WRITE DOWN YOUR INTERRUPT NUMBER HERE: _________

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 23

 TM4C Users:

 On page 100, you’ll see a list of interrupts showing a VECTOR number and an INTERRUPT
number. Which one do you choose? Ah, just pick one and HOPE. Sometimes, that’s what we
engineers do, eh? Folks think we’re so smart, but we just keep plugging in stuff until it works.
Admit it. Ok.

 The VECTOR number is what we need to use because this builds the vector table used to
route the interrupt (Timer going off) to our ledToggle() routine. BIOS will insert a call to our
ISR handler (ledToggle) in the appropriate vector location. The INTERRUPT number is the
actual BIT in the interrupt registers.

 Timer 0 is taken by BIOS for the system tick (more on that in a later chapter). Timer 1 is
taken by BIOS for the TimeStamp Provider – again, more on this later.

 So, we are left to use another timer – let’s use Timer2. Simple enough – just find the listing
for Timer 2A and use the VECTOR number (which is 39). Want more info on the Tiva-C
timers? Take the Tiva-C workshop !!

 ► TM4C – WRITE DOWN YOUR VECTOR NUMBER HERE: _________

 CC2650 Users:

 On page 231 of the TRM (Technical Reference Manual), you’ll see a list of interrupts showing
a VECTOR number and an INTERRUPT number. Which one do you choose? Ah, just pick
one and HOPE. Sometimes, that’s what we engineers do, eh? Folks think we’re so smart, but
we just keep plugging in stuff until it works. Admit it. Ok.

 The VECTOR number is what we need to use because this builds the vector table used to
route the interrupt (Timer going off) to our ledToggle() routine. BIOS will insert a call to our
ISR handler (ledToggle) in the appropriate vector location. The INTERRUPT number is the
actual BIT in the interrupt registers.

 FYI – BIOS uses RTC for Clock ticks and SysTick timer for Timestamp.

 ► CC2650 – WRITE DOWN YOUR VECTOR NUMBER HERE: _________

Lab 5 – Procedure

5 - 24 Intro to the TI-RTOS Kernel Workshop - Using Hwi

11. ALL USERS – Answer a few questions.

 Let’s think about the interrupt mechanism and BIOS for moment and ► write the answers to
these questions:

 ► What peripheral is triggering the interrupt? ____________

 Ok, that was easy one. But when an interrupt is triggered, does it always get serviced? Nope.
Usually there is an INDIVIDUAL and a GLOBAL interrupt enable/disable. If you open

main.c, you won’t see any commands that are enabling any interrupts.

 ► Who is responsible for enabling interrupts (globally and individually?) ________________

 ► When does this “enabling” occur? _______________

 ► Which function do we want to run when the interrupt triggers? _______________

 ► What ties the interrupt from the timer TO this function? ________________

 Some may have answered that last question by saying “vector table” which is partially
correct. But when using BIOS, it will be the Hwi object that connects the trigger and ISR
(BIOS will build the vector table for you).

 ► How is the context save/restore handled? ___________________________________

 In a non-BIOS interrupt, the PC is saved somewhere (like a stack) and when the ISR returns,
the PC is loaded with the previously saved value getting you get back to where you were.
Great. But what if, while using BIOS, a higher priority thread than what was first interrupted is
posted during the ISR? Do you return back to the original PC location?

 YES NO Explain: __

 GG

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 25

Add The New Hwi

12. Add an Hwi object to your CFG file.

 As discussed in the chapter, you will need to add a new Hwi instance and provide some
information.

 ALL USERS EXCEPT FOR CC2650:

 ► Right-click on the Hwi module in the outline view and add a new Hwi:

 CC2650 ONLY:

 ► Right-click on the Hwi (ti.sysbios.hal) module in the outline view and add a new Hwi:

There are two Hwi modules for CC2650. The “family” version has a ton more control over
various specific hardware features. You can actually add the Hwi to either, but for simplicity,
we’re just using the standard module. If, at some point, you want more control over specific
features, click on the “family” version to see what it contains.

 ALL USERS:

► Fill in the object with the following:

 Hwi handle: pick something like HWI_TIMER2 (or whichever timer it is)

 ISR function: which fxn do you want to run when the Timer triggers the interrupt?

 Interrupt Number (MCU): the number from the datasheet you already figured out

 Event Id and Interrupt Number (C6000 only): choose appropriate settings

 Leave all other default setting as is and ► save your .cfg file.

Lab 5 – Procedure

5 - 26 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Note: When working inside the BIOS GUI, you have to be careful NOT to click or type or tab too
fast – especially when the tool is “thinking” – otherwise known as “validating”. When
validation is occurring, in the bottom right-hand corner, you will see this:

If you start typing or clicking away while your app.cfg is being validated, it may erase

some settings or typed letters. The lightning-speed clickers/typers (and you know who
you are) will fight with this a little. Beware. The good news is that each entry that you
make is being validated NOW vs. hearing about it during build. So the overall benefit is

GOOD.

13. Modify main.c to remove delay() and peruse a few other details.

 ► Open main.c for editing.

 In the previous lab, we used a delay() function to delay 500ms for our blink LED program. In
this lab, we have setup code for a specific timer on your device.

 Look in hardware_init() and find the timer setup code near the bottom of that routine – read
the comments and familiarize yourself with that code. Now that we have a TIMER to create
our delay, we no longer need the software delay() function.

 ► In ledToggle(), comment out or remove the call to delay() and the prototype.

 ► Just to be complete, comment out or delete the delay() function itself (hint – select the
whole function and type CTRL-/, it comments everything that is selected.

 Now, when the timer triggers the interrupt (after about 500ms), ledToggle() will be called, the
LED will toggle and then the program will return to where (which thread or function)?

Build, Load and Blink !

14. Build, load and run your program.

 ► Build your project and fix any errors that occur. When you have a clean build, ► load and
run it. Does the LED blink every second?

 If not, here are some hints that may help:

 Did you use the proper interrupt number in the new Hwi?

 Did you use ledToggle as the ISR function name?

 Try to debug the problem for a few minutes and then ask your instructor for help.

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 27

Debugging With UIA and ROV

15. C28x and C6000 USERS – Add LoggingSetup to your app.cfg file.

 FYI – Tiva-C and MSP430 users already have LoggingSetup in their CFG file based on the
driver template they chose. However, C28x and C6000 users still have to add UIA manually
because the Kernel template does not add this service for you manually.

 ► Open your .cfg file and under Available Products, right-click on LoggingSetup and add it

to your CFG file (drag and drop works too).

 ► Don’t forget to comment out the five lines of script code to kill logger0 instance like you did
in the previous lab:

 No other configuration is necessary.

 ► Save your CFG file.

 CC2650 USERS ONLY:

Don’t forget to comment out the “ROM” section of the .cfg file and enable Logs and Asserts
in BIOS→Runtime.

Without these changes, UIA won’t work very well. Only Log_info() statements will show up in
the “Live Session”.

Lab 5 – Procedure

5 - 28 Intro to the TI-RTOS Kernel Workshop - Using Hwi

16. Build, load and run your program.

 ► Build and run your program and halt it after 5 seconds or so.

17. Explore the RTOS Object Viewer (ROV).

 ► Select Tools  ROV.

 How many threads do you have in your system? 1 2 3 4 5 6 7

 This is sort of a trick question and will be different based on your architecture. Let’s see if we
can find these threads and a decent answer to the question.

 The thread types are Hwi, Swi, Task and Idle. Some threads are added by BIOS implicitly
and some are added by the user. So, if you take a common sense approach, your answer
would be TWO – the Hwi you added and, if you’re thinking properly, you’d remember Idle is
always there. So give yourself full credit if you answered two in the previous question.

 But actually there are more than two. Let’s explore all of ROV and in the process answer
some other questions.

 ► Click on the underlined service in ROV and then answer the question:

 BIOS: What is your CPU frequency? _________

 Hwi: How many Hwi’s are in your system? _________

 Hwi (Module tab): Stack size? ________ Max stack used ________

 Idle: How many Idle functions are in your system? ________

 Swi: How many Swi’s in your system? _______

 Task: How many Tasks? _______

 Timer: How many Timers are active? _______

 So, you can see the Hwi you added to the system and yes, Idle is still around, but there are
more threads that BIOS added to the system automatically. BIOS will always add a Clock
(system tick) which adds an extra Hwi (for the timer), a Swi (for the clock function) and a
Timer. More on this in a later chapter.

 If you had 3 Hwi’s, that was yours, Clock and one for Timestamp which will be explained in a
later chapter.

 Let’s move on to looking at UIA a bit more…

18. Use the RTOS Analyzer to see the Logs.

 ► Select Tools  RTOS Analyzer  Execution Analysis (start session, look at Live Session
results), then filter them to see the LED toggles.

Hint: We will use Log_info() in a later lab along with TimeStamp to benchmark our code

and display the results in this window.

FYI – The Execution Graph and CPU Load won’t show much in this lab – therefore we skip the
steps to look at them. First, we aren’t logging Hwis and second, all activity is done in the Hwi that
we aren’t logging. So, no fun there. In future labs, you will get much more experience using these
tools.

 Lab 5 – Procedure

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 29

19. Find a function in your code.

 You may or may not have done this before in Eclipse or other IDEs. Sometimes, you want to
know WHERE a function resides in your code either by selecting the prototype or an actual
call to that function. With large projects (not these labs), it is sometimes difficult to find the
actual function that is running. Eclipse has some built-in features to help.

 Let’s see how this works with a local function as well as a call to a BIOS function…

 ► Open main.c for editing.

 ► Then hover your mouse over BIOS_start() in main(). You will see something similar to:

 Notice that this “hovering” info provides some useful information.

 ► Now highlight the prototype for ledToggle near the top of the file.

 ► Right-click on the highlighted function and select “Open Declaration” or press F3. This will
take you directly to the function itself. This is how a “local” function would work.

 ► Now highlight the call to Log_info1() in ledToggle() and press F3. This will open up log.h

and show you where this function is declared.

 Ok – this is not a huge deal – but could be handy some day…

20. Terminate your debug session. Close your project. CLOSE YOUR PROJECT.

You’re finished with this lab. Please raise your hand and let the instructor know you
are finished with this lab (maybe throw something heavy at them to get their
attention or say “CCS crashed – AGAIN !” – that will get them running…)

 ► If you have time, move on to the optional part of this lab…using BIOS
Timers – REALLY good stuff…or watch your architecture videos…

Optional Lab – Using the BIOS Timer Module

5 - 30 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Optional Lab – Using the BIOS Timer Module

In the first part of this lab, we used the driver library code to set up and use a hardware timer to
trigger an Hwi. That’s fine and may be exactly how you would do that in your own application.

In this optional lab, we wanted to highlight a service from BIOS called Timer. What does it do? If
all you need is a timer plus an Hwi to call a function, well, that’s what BIOS Timer module is. No
need to figure out period values, frequencies, interrupt vector numbers – all the manual way.
Timer combines ALL of this in one simple service.

So, just imagine grabbing the Timer module, picking the timer and adding the function (ledToggle)
that you want to call – build and run. Sounds too easy, eh?

Let’s try it….

Archive Lab and Copy Project

21. Archive your current solution.

 Well, it is probably a good idea to save off your current solution before moving on. And,
learning how to archive a project to share with someone else is always a good thing. It is
easy to do, so let’s do it…

 ► Make sure your project is OPEN. If not, open it back up (after closing it before)

 ► Right-click on your project and select Export.

 ► Then select Archive File and click Next:

 ► Browse to your /Lab_05 folder and type in a name – something like myHwiLab05.zip.

Make sure your project is checked and all files are checked (C28x example shown).

 Optional Lab – Using the BIOS Timer Module

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 31

 ► Click Finish. Your project is now archived in your Lab_05 folder. If desired, you can

always choose Project  Import Existing…  Archive and retrieve it.

22. Let’s COPY our current project to a new one.

 Another great trick in CCS is that you can copy projects inside the Project Explorer. We don’t
NEED to do this now because we can simply edit the project we’re using, but it is another
feature of CCS that is nice to learn (hey, this is an optional lab, so there are no rules).

 ► Right-click on your project and select Copy.

 In the white space below, ► right-click again and select Paste. A dialogue will appear that
allows you to change the name of the project and place the project in a folder:

 ► Name it “blink_target_TIMER” and just keep the default location (your workspace).

 ► Click Ok. Your project will now be copied (all files and links) to a new project in your
workspace. Great. Now it’s time to modify the project to use the BIOS Timer module…

Add Timer to BIOS Cfg

23. Delete the Hwi.

 Because the timer includes an Hwi already, we don’t need the one that we added earlier.

 ► Right-click on the Hwi instance and select Delete.

24. CC2650 and Tiva-C USERS ONLY – Comment out TimerIntClear() from ledToggle

 In ledToggle, comment out the call to TimerIntClear() as shown below. It won’t hurt anything
to leave it in. We are just being thorough and the code is unnecessary now that we are using
the BIOS Timer module.

Optional Lab – Using the BIOS Timer Module

5 - 32 Intro to the TI-RTOS Kernel Workshop - Using Hwi

25. Comment out the code for the timer setup.

 Each architecture has a slightly different amount of setup code. But, it should be commented
well enough to find it.

 ► Open main.c for editing. Do not DELETE lines of code – just comment things out.

 ► Comment out the timer setup code in hardware_init(). Make sure you don’t comment out
any necessary CPU clock or GPIO setup code. Remember, if you highlight lines of code, then
hold down the CTRL key and then press “/”, CCS will comment the entire highlighted block.

 Here is an example of the TM4C code commented out:

 If there is any other timer-specific code in ledToggle(), ► comment it out also.

26. Add BIOS Timer module to app.cfg.

 ► In Available Products, right-click on Timer (as shown) and add it to your .cfg file.

 ALL USERS EXECEPT FOR CC2650 – Use Timer under “Scheduling” as shown:

 CC2650 USERS ONLY:

 This timer’s source is Systick which only supports 24 bits. In order to use a 32-bit standard
timer, you need to choose a device-specific timer. Click the following in Available Products:

 Other Products → bios_6_xyz → ti → sysbios → family → arm → lm4 → Timer:

 Optional Lab – Using the BIOS Timer Module

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 33

 ► Once added, right-click on the Timer in your outline view and add a new Timer instance.

 ► Fill in the settings that make sense (here’s an example for TM4C users):

 Handle: anything you want (maybe use the Timer number like below)

 Timer ISR function: ledToggle

 Timer Id: it depends on the architecture – see the next page

 Period: 500000 uS

…See snapshot on the next page for the dialogue box…

 TIMER TO USE – in general, use the Timer you used in the previous lab:

 C28x: Timer 0

 C6000: Timer 2

 MSP430: Timer 1

 TM4C: Timer 2

 CC2650: Timer 0

 ► Save your .cfg file.

Optional Lab – Using the BIOS Timer Module

5 - 34 Intro to the TI-RTOS Kernel Workshop - Using Hwi

How does BIOS know what frequency you are running at?

 There is ONE setting that drives this. You can LIE to BIOS and it will hurt you, but isn’t that
the case with most relationships? 

 BIOS will calculate the proper PERIOD/TIMER values to place in the hardware timer based
on the frequency setting of the BIOS module. So, whatever your clock frequency is actually
set at (via boot or via init code), just tell BIOS the truth and all is well.

 If your target supports the BIOS Boot module and you set the frequency there, this frequency
will be reflected in the BIOS  Runtime setting.

 But for now, go check to make sure the frequency BIOS thinks you’re running at IS the proper
frequency.

 In your .cfg file, ► select BIOS  Runtime and check the frequency listed there. Is the right

frequency shown? (C6000 example shown below):

 For most processors, it is correct already. The point is – the TIMER module will use this
frequency to calculate the period/timer values for the hardware timer on your architecture. If
there is a mistake, correct it now. But just to let you know the proper frequencies:

 C28x: 90 000 000

 C6000: 300 000 000

 MSP430: 8 192 000

 TM4C: 40 000 000

 CC2650 48 000 000

 Remember, this Timer module contains an Hwi and uses a timer and will call your ISR
function (ledToggle) when the timer counts down to zero. But the beauty is that:

 You don’t have to know the timer hardware

 You don’t have to look up the interrupt vector number

 You don’t have to calculate a period based on frequency of the device

 ► Save your .cfg file.

 Optional Lab – Using the BIOS Timer Module

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5 - 35

27. Build, load, run.

 ► Build and run your program. Is the LED blinking ?? Hopefully so. If not, debug away.

 This optional discussion really does highlight how easy BIOS is to use in terms of setting up
possibly tricky code – it saves time and headaches. Of course, there’s even more to come…

28. Archive your Timer project if you like – you know how to do that now.

29. Terminate your Debug session, close your project and close CCS.

 You’re finished with the optional part of this lab. If someone is still working on the main
lab, help them out…be a good neighbor – or boast that you’re done with the optiona lab

and stick your chin high in the air…or watch your architecture videos..

 Lab 6: Blink LED Using a Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 11

Lab 6: Blink LED Using a Swi

In the last lab, the timer ISR executed the toggle of the LED. The whole idea of BIOS is to make
ISRs very short. SO, in this lab, the timer ISR will POST a Swi that calls ledToggle and toggles
the LED.

This will be the first lab where you IMPORT the starter project vs. creating a new project. All of
the libraries and source files have been added for you (aren’t you excited?) in the archived starter
project. It is actually the solution from the previous lab – a good starting point.

This is the first lab where UIA will display some very useful information and you will get a chance
to see it in action.

Lab 6 – “Blink LED” Using Swi

main() {

init_hw();

Timer (500ms)

BIOS_start();

}

main.c

Hwi

Scheduler

Idle

Swi_post(LEDSwi);

Procedure

• NEW→IMPORT archived (.zip) project
(please update to the latest BIOS/XDC/UIA)

• Add Swi object (for ledToggle)

• Build, “Play”, Debug

• Use ROV/UIA to debug

• Use Log_info()to print #toggles

 Time: 45 min

Hwi ISR

ledToggle() {

toggle(LED);

Log_info();

}

Swi

LEDSwi

Lab Goal:
Instead of toggling the LED in
the Hwi’s ISR, the ISR will now
POST a Swi to toggle the LED

Lab 6 – Procedure – Blink LED Using Swi

6 - 12 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 – Procedure – Blink LED Using Swi

Much of the work of creating a SYS/BIOS project is done. After the initial “startup” of the previous
chapters to learn how to create a BIOS project and create a thread (like an Hwi), adding
additional services is quite easy.

This lab proves this – with minimal steps you’ll add a Swi and get an Hwi to post that Swi. In this
lab, here is the chain of events:

 The timer clicks down to zero and triggers a timer interrupt (via driver library code)

 Hwi runs and calls a new ISR (Timer_ISR) – (new ISR written by user)

 Timer_ISR() posts the Swi (LEDSwi) to the BIOS Scheduler – (user creates Swi object)

 LEDSwi runs ledToggle() and toggles the LED

 Processing returns to Idle waiting for the next timer interrupt (and so on)

Also, a starter project has already been created for you to streamline the project creation steps
and get you quickly into the meat of the lab. You will simply import, edit and then build and run.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

 ► Close any open projects (right-click Close Project) before moving on. With many main.c

and .cfg files floating around, it is easy to get confused about WHICH file you are editing.

Did you close them?

► Also, make sure all file windows are closed. Again, this will help the confusion of

modifying, by mistake, the WRONG main.c or WRONG .cfg file.

2. Import existing project from \Lab06.

 There are two ways to IMPORT a project – either from a directory or an archive. The course

author chose to archive each starter project in a .zip file – thus, you will be importing an

archive. So, what could go wrong when importing a project? The author had to make some
assumptions about paths for header files and libraries, right?

Note: Also, if it has been a year since those projects were created that you are importing, what
else might be different? Ah – the tools – like XDC and TI-RTOS and the compiler may
have been updated since the starter projects were created. So, after importing, you may
get some warnings about “this project was created with older tools”. If this occurs, simply
open the Properties of the project and:

►choose the latest XDC and TI-RTOS tools and the compiler version.

This will be the SAME for all future labs when you import an existing project – ALWAYS
ALWAYS ALWAYS check the RTSC settings and select the LATEST tools installed on
your PC. If you have a problem later, the author gives NOT following this advice about

4:1 odds as the cause of the problem.

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 13

 What you are importing is the solution from the last lab (h/w timer, NOT the optional lab),
though was renamed to reflect the new lab name. The starter project is named:

 Lab_06_TARGET_STARTER_blink_Swi.zip

 ► Select Project  Import CCS Projects:

 ► Then select the radio button for “Archive” and browse to the archived file for this lab (C28x
example shown below):

 ► Click Finish.

 The project “blink_TARGET_SWI” should now be sitting in your Project Explorer. If not, try to
debug the problem for a few minutes and then ask for help from your neighbor.

 VERY IMPORTANT FOR ALL USERS !! ► Select the Project Properties and view the RTSC
tab and select the latest XDC, TI-RTOS tools revisions. 2nd time that was mentioned. This
step will need to be done for EVERY lab that imports a project (i.e. all future labs).

 ► Expand the project to make sure the contents are correct. If all looks good…move on…

 ► When you import a project like this, where is your project located? _________________

 Sure, the initial zip file was in your Lab_06 folder, but where is the PROJECT folder that
contains the files you see in the Project Explorer?

 The answer is – it’s in your workspace. And if you chose the default Workspace for this
workshop, your project will be located at:

C:\TI-RTOS\Workspace\ProjectName

► Using Windows Explorer – go find it and see for yourself…

Lab 6 – Procedure – Blink LED Using Swi

6 - 14 Intro to the TI-RTOS Kernel Workshop - Using Swi's

3. Build, load and run the project to make sure it works properly.

 We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab, it should build and run.

 ► Build – fix errors.

 ► Then run it and make sure it works. If all is well, move on to the next step…

FYI – A very important header file has been added to main.c (except for CC2650 users)–
it’s been there for every BIOS project before…but no attention has been paid to it. BIOS
adds all symbols for statically defined objects – like the handles to BIOS objects (Hwi’s,
Swi’s, etc.). Make sure you have the following header file in your code.

Remember – BIOS header files should be placed BEFORE any xWare header files.

► Look at the top of main.c and observe the folllowng #include:

Add a Swi to the System

4. Create a Swi object.

 ► First, open app.cfg and see if Swi is a service contained in your app.cfg file. It

shouldn’t be there because we are using the minimal app.cfg as the starting point (just like

the last lab). If you used “Typical”, it would already be there.

► Via Available Products, add Swi to your app.cfg file.

► Once added, added a new Swi instance – give it the name LEDSwi and point it to the

proper function.

Remember, when the timer triggers the Hwi, it will post THIS Swi you are creating.

Which function do you want the Swi to run when it posts?: ___________________

 ► Once again, try right-clicking on any field and select HELP for more info. See what it says.

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 15

 The default priority is -1. What does this mean? It means, interestingly, the HIGHEST Swi
priority. First, let’s make a mistake with the priority setting and see how BIOS reports the
error…

 ► Choose “Interrupt priority” 42 (which does not exist) and save app.cfg. What happens? It
validates (checking for errors in your Swi object parameters).

 The tools report back with lots of red marks. There is one next to the Priority parameter:

 Also in the Outline View:

 And in the Problems window:

 So, this validation process works – and trust the author when he says that this validation
process catches user errors – and this is a good thing. Wouldn’t you want to know NOW that
there is a mistake vs. during build time? The sooner you know, the better (although the time it
takes to validate while young typers are whizzing through fields can be annoying).

 In the last error message there, it says “must be less than Swi.numPriorities (32 or 16)”. What
does this imply? It implies that there is a max number of Swi Priorities on each architecture:

 32 Pri levels on C6000/Tiva-C

 16 on C28x/MSP430

 FYI – this limitation is based on the size of an “int” on each architecture

 ► Click on Module in the Swi configuration dialogue to see the default setting of Swi
priorities:

 If you are a C6000, CC2650 or Tiva-C user, you can modify this setting to as high as 32. Swi
priorities go from 0 (lowest) to (Swi.numPriorities – 1) where Swi.numPriorities is shown in
the box above. Can you set this number LOWER than 16? Sure. But just leave the default
(16) as is for now.

 ► Now, click on Instance and change the Priority of LEDSwi to “1”.

► Save your .cfg file

Now when you POST this Swi with the following command, what is the HANDLE you use as

the parameter to the Swi_post() call?

Swi_post(????): ???? = ______________

Lab 6 – Procedure – Blink LED Using Swi

6 - 16 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Add New ISR and Modify Hwi

When the timer goes to zero and triggers an interrupt, we want to call a function (ISR) that posts
our new Swi. So, we need to modify the Hwi (to call the new ISR instead of ledToggle) and create
a new ISR that posts the Swi. Let’s create the new ISR first…

5. Add a new function for your ISR.

 ► Open main.c for editing.

 ► At the end of the file, add a new function named Timer_ISR:

 ► Fill in the proper parameter for the Swi_post() – which is the handle of Swi you created

earlier.

Tiva-C and CC2650 users – ► you must move the following line of code

(TimerIntClear…) from ledToggle() to just above the Swi_post() in Timer_ISR() (as

shown) because this function clears the Timer’s interrupt flag in the peripheral. If you don’t
move it, your code won’t work.

 ALL USERS: ► Save main.c.

6. Modify the Hwi to call the new ISR.

 When the timer triggers the interrupt, we want the Hwi to call the ISR (that posts the Swi).
You just wrote this new function so:

 ► modify the Hwi object in .cfg to call this new ISR function. No need to change any other

values in the Hwi config – we still want the same Timer vector number, etc.

 ► Save your .cfg file.

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 17

Build, Load and Run…

7. Build, Load, Run

 ► Build, load and run your code.

 This says it all. That’s it. You now have an ISR posting “follow up” activity to a Swi that is
under software control.

 Is your LED blinking? If not, debug for a few minutes and then ask your instructor.

 Right now, I hear the naysayers saying “so what? What’s the big deal?” Yes, it was a very
small step, but what it represents is far greater than a lab in a workshop can portray:

 Your ISRs are short and therefore no nesting is required (nesting can be a nightmare)

 You can have an unlimited number of Swi’s in your system – unlike the fact that the
number of hardware interrupts are limited by hardware.

 If you had multiple Swi’s, to re-prioritize them takes seconds via the priority parameter,
then you simply rebuild and run vs. having to hack ISR code to manage nested interrupt
priorities. Ah, life is better…

Lab 6 – Procedure – Blink LED Using Swi

6 - 18 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Use UIA and ROV to Debug Application

Now that we have a few things running in our system (Hwi, Swi, Idle) and UIA should look a bit
more interesting.

8. Terminate your debug session and make sure you’re in the Edit perspective.

9. Configure UIA settings.

 Before we move on, we want to make sure UIA is set up properly.

Click on LoggingSetup in your .cfg outline:

 Make sure your setup matches this:

 Make sure the following is enabled:

 Task Context, Swi Context (Swi is crucial, see circle above)

 The rest of the settings should be just fine (copied from last lab)

 CC2650 users – the ROM has already been disabled in the script code

Note: Just a note on Hwi logging. It is helpful to be able to track Hwi’s in the system. The choice
is to track ALL of them or NONE of them (a feature has been requested to the TI-RTOS
team to be able to track only specific Hwi’s, but this feature does not exist in the current
UIA tool). But we have only one Hwi, right? Nope. There are two other Hwi’s supporting
the Clock and Timestamp services in BIOS, so if we turn on Hwi logging, those other
interrupts would dwarf our timer interrupt and we just wouldn’t see it.

Shortly, we will show you via ROV which interrupts are used implicitly by BIOS. This is
important information because you don’t want to write code that conflicts with the

interrupts used by BIOS “under the hood”.

 ► Save .cfg.

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 19

10. CC2650 USERS ONLY – Add line of script code to get proper CPU Load

 The default clock for Timestamp is RTC running at 32kHz. While you haven’t added this
capability to your .cfg file, it IS running in the background and is used to calculate time
stamps and CPU loading information. SO, you need Timestamp to be using a clock source
running at CPU rate – 48MHz. You will learn more about this in the next lab. So for now, add
the following script code to your .cfg file and save .cfg:

 var Timestamp = xdc.useModule('xdc.runtime.Timestamp');
Timestamp.SupportProxy =

xdc.useModule('ti.sysbios.family.arm.m3.TimestampProvider');

11. Clean your project.

 This is really not necessary here, but it is a skill that you will need to know. Sometimes, object
files or other “stuff” gets stuck and not properly rebuilt and a “clean build” is sometimes
necessary. If you’ve been around the block with any tools, you know the story.

 ► Right-click on your project and select “Clean Project”.

 ► Delete the Debug and src folders from your project.

Note: The Debug folder was created by CCS and contains your object files and .out file – so

this is a generated folder. The src folder is generated by BIOS, so it can be deleted also.

Just be careful when “cleaning” (deleting) these folders that you don’t accidently delete
something important.

12. Build your project and get ready to run – but DO NOT RUN YET.

 ► Build your application.

 We want you to run for FIVE (5) blinks of the LED. So after you hit PLAY, count 5 blinks and
then hit PAUSE.

 ► Ok – NOW play, count to 5, and pause/halt. Our goal here is to observe a few things in the
RTOS Analyzer and ROV. You have now captured the proper data to see some useful
graphs and info.

http://www.ti.com/tool/sysbios

Lab 6 – Procedure – Blink LED Using Swi

6 - 20 Intro to the TI-RTOS Kernel Workshop - Using Swi's

13. View the Live Session display in the RTOS Analyzer.

 ► Select: Tools  RTOS Analyzer  Execution Analysis (then Start it)

 Wow, a whole bunch of data. Raw logs actually is a display of every “event” that BIOS stored
in the System Log – lots of stuff even for a simple application like ours:

 So, what do you see? Lots of stuff:

 The results of Log_info() telling us how many times the LED was toggled

 When the Swi was posted, started and stopped

 The CPU Load calculation and the timestamp (Time) in nanoseconds.

This is a ton of information which can be very helpful during debug. Do you think a graphical
representation of these events would be helpful? Of course – that’s what the Execution Graph is
– a display of all these system log events…

Hint: IF THE RTOS ANALYZER DISPLAYS SEEM TO NOT BE WORKING PROPERLY…
Make sure you added Swi Logging and then try again. Close the RTOS Analyzer

windows, run, halt, then open them up again.

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 21

14. Use the Execution Graph.

 ► Select Execution Graph

 This will display the events in your system via a graph. The SCOPE of what you are looking
at varies depending on the frequency of the events. You can zoom in or zoom out and take
measurements on the graph for profiling when events occur.

 In the upper left-hand corner of the display, you’ll see some “+” signs and the services shown.

 ► Expand the “+” signs and zoom in/out to match approximately the diagram below (C28x is
the example) – FYI – most users need to ZOOM OUT to see things:

 So we can see the following:

 Idle dominates the whole picture (represented by the bar at the bottom)

 We can see when the Swi is posted, starts and stops – very handy

 And we can see the ledToggle() fxn running when it is started by BIOS.

 ► Zoom in on one of the ledToggle() routines…

 FYI – if you click on the graph (and it makes a red vertical line BEFORE you zoom in), the
zoom will focus on that event. It looks like this:

 It shows the Post, Start and Stop of the Swi (LEDSwi) and you see the ledToggle routine
running. IF, we were logging Hwi’s, you would see the Scheduler run between the Post and
Start of the Clock Swi. And, of course, Idle is the dominant thread running here.

So, how long does it take to toggle the LED on your target? Who knows… who cares…but
we know you’re an engineer and you WANT to know or you cannot sleep at night. So
hopefully there is a way to PROFILE on these graphs…

Lab 6 – Procedure – Blink LED Using Swi

6 - 22 Intro to the TI-RTOS Kernel Workshop - Using Swi's

15. Profile the ledToggle routine on the Execution Graph.

 ► Zoom in (you’ll find the zoom +/- shortcuts on the Execution Graph toolbar just above the
graph) to the ledToggle routine so that you have a good view of it – something like this:

 There is a measurement marker that you can use to benchmark how long this routine took on
your target. You will lay down TWO markers and the tool will take a measurement between
them.

 ► Select the measurement marker:

 ► And lay down two markers (X1 and X2) on the left and right respectively (you get to
choose where you lay down markers):

 And you’ll see in the top left-hand corner a benchmark of (C28x is the example below):

 11 what? Cycles? Days? No – it is the units on the graph – microseconds. The units change
as you zoom in and zoom out, so knowing the UNITS and the NUMBER is important.

► What is the unit of time on the x-axis on YOUR graph? ___________________

 ► What is the actual benchmark number (X2-X1) you observed? ___________________

 Lab 6 – Procedure – Blink LED Using Swi

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6 - 23

 The author viewed the following results (Swi_enter to Swi_exit):

 C28x: 991 cycles (11uS @ 90MHz)

 C6000: 433 cycles (1.43uS @ 300MHz)

 MSP430: 1500 cycles (183uS @ 8.192MHz)

 TM4C: 520 cycles (13uS @ 40MHz)

 CC2650: 1488 cycles (31uS @ 48MHz)

Note: this includes Swi overhead, call to ledToggle() and code to toggle the LED via GPIO. In
the next lab, you will benchmark the exact hardware cycles to toggle the LED/GPIO.

16. Check CPU Load.

 A much less exciting view of the world is CPU load. But, it can be important.

 CPU load is calculated by TIME NOT SPENT IN IDLE. So what if you had a system that had
15 Idle functions and that was it? No Hwi or Swi or Tasks – all Idle functions…

► What would your CPU load be? ______ %

 If you put anything down but zero percent, please check the drugs you are using or the
therapist you are seeing. If you spend 100% of the time in Idle, then your CPU Load is 0%.

 You may see a note that says something like “CPU Load is not accurate because Swis and
Hwis are not tracked” – even if you ARE tracking Swis. This just means that if you are not
tracking Hwis (which take a ton of logging buffer space because they happen often), the CPU
calculation does not include the time spent in Hwis. For our little system, this is not a big deal
(one Hwi per half second). And, if you continue to have short ISRs (a couple real-time reads
and a post of follow-up activity), the CPU Load should continue to be fairly accurate.

 However, if your ISRs are long and you don’t track Hwi’s, then your CPU Load won’t reflect
time spent in the ISR. So, when are we spending time outside of Idle? When we are
processing the ISR (which is not much) and when we are toggling the LED in the Swi. The
CPU load will be wildly different based on the target you are using, but let’s see what it is for
you….

 ► Select CPU Load to see this graph (C28x version shown):

FYI – you can zoom vertically as well as horizontally – or both. The easy way is just to
highlight (drag a square from Load 0-5) and release it or…

 ► Click the down arrow as shown and choose “vertical” and then zoom in as shown above.

Lab 6 – Procedure – Blink LED Using Swi

6 - 24 Intro to the TI-RTOS Kernel Workshop - Using Swi's

The C28x shows about 1% load. Again, your mileage may vary depending on your target.
Many architectures will report 0% load which is fine. If you want to test this, just add a big
huge FOR loop to add a load.

Whether this is important information to you or not is up to you – but now you know how to
display it. Remember, the Raw Logs (or Live Session) also told us this same info:

17. Conclusion.

 You have now seen a bit more of the power of the UIA and RTOS Analyzer. Remember, we

are using the STOP MODE JTAG transport protocol. This information can be sent over other

protocols like a UART or Ethernet. The “how” of this is beyond the scope of this workshop –
but at least you’ve been exposed to the kinds of info that the RTOS Analyzer can display.

 In future labs, you’ll be asked to perform some of these tasks without all of the screen
caps…so hopefully you paid attention.

18. Terminate your debug session and close your project and all files.

You’re finished with this lab. Please raise your hand and let the instructor know you are
finished with this lab and then go help a neighbor with their lab…or watch your

architecture videos…or be devious and enjoy the pleasure of watching other people
struggle through the lab or be lazy and play a game on your smart phone…

 Lab 7: Clock Functions & TimeStamp

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 11

Lab 7: Clock Functions & TimeStamp

This lab will introduce two time-based SYS/BIOS services – Clock and Timestamp. Clock lets us
create periodic (and one-shot) functions while TimeStamp provides a timebase you can access
from your programs

Other SYS/BIOS services make use of both of these services. In fact, we’ve seen hints of this in
previous labs. This lab explores the “explicit” use of these services.

As a historical note, DSP/BIOS (BIOS 5.x) provided both a Clock and Periodic (PRD) services to
create a similar set of functionality. SYS/BIOS (BIOS 6.x) has streamlined these services into the
current modules.

Note: Using Clock will be covered in the main lab.

TimeStamp and UIA analysis are covered in the optional lab.

Lab 7 – “Blink LED” Using Clock

main() {

init_hw();

//Timer (500ms)

BIOS_start();

}

main.c

Clock

Hwi

Procedure
• Import archived (.zip) project

• Add Clock object (for ledToggle)

• Remove Timer, Hwi, Swi !!

• Build, “Play”, Debug

• Use TimeStamp/UIA to benchmark your code

• Lots of TIME calculations regarding LED toggle

• Everything is done “inside” the BIOS Scheduler

 Time: 59.8 min

Clock

Clock

Swi

ledToggle() {

toggle(LED);

Log_info();

}

Idle

BIOS Scheduler

Tick

Lab Goal:
Instead of toggling the LED in a
Swi, the Clock module contains
the trigger (timer), Hwi and Swi

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 12 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 – Procedure – Blink LED Using Clock Swi

In this lab, much of the work is just deleting code we’ve already written because BIOS Clock will
do everything except write our algo – which, as always, is the ledToggle() routine. BIOS Clock is
VERY flexible. You can have 5 or 10 or 17 functions being driven by ONE timer with virtually zero
work on the programmer’s part.

What work is required? Pick your tick rate and set up each clock function with the #ticks and the
function and you’re done. Way too easy – and extremely powerful.

Once you set up Clock and a Clock Function, here is the chain of events:

 Clock timer clicks down to zero and triggers a timer interrupt

 Hwi runs and posts Clock Swi

 Clock Swi determines if any Clock Functions should run and if so, calls them (in our case,

it would be ledToggle())

 ledToggle() runs and toggles the LED and then returns back to Idle

Again, the starter project has already been created for you. You will simply import, edit and then
build and run.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

 ► Close any open projects (right-click Close Project) before moving on. With many main.c

and .cfg files floating around, it might be easy to get confused about WHICH file you are

editing.

► Also, make sure all file windows are closed. Like your mom told you…”please clean up
your workspace !”

2. Import existing project from \Lab_07.

 Just like last time, the author has already created an archived project for you.

 Import the following archive:

 Lab_07_TARGET_STARTER_blink_Clk.zip

 ► Click Finish.

 The project “blink_TARGET_CLK” should now be sitting in your Project Explorer. If not, try to
debug the problem for a few minutes and then ask for help from your neighbor.

 ► Right-click on the project and make sure the latest tools are selected: compiler, XDC and
TI-RTOS. Again, any time you IMPORT a project, always check this.

 ► Expand the project to make sure the contents are correct. If all looks good…move on…

3. Build, load and run the project to make sure it works properly.

 We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab (plus a little extra code the author graciously added for you),
we expect, it should build and run fine as is:

 ► Build – fix errors.

 ► Then run it and make sure it works. If all is well, move on to the next step…

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 13

Add a Clock and Clock Function to the System

4. Add Clock to your .cfg file.

 ► In Available Products, right-click and Use Clock (or just drag it over) if not already present
in your .cfg file:

Note: MSP430, CC2650 and Tiva-C users will already have Clock in the .cfg file.

5. Configure Clock settings.

 Ok, let’s stop for a second and think – out loud if you have to. We still want the LED to toggle
at a rate of ½ sec. Given that:

 ► What is the default System Tick period set to? _________

 ► Given the default period, how many ticks do we set ledToggle() to run at? _________

 When the system tick goes off, we get an interrupt (Hwi) and a Swi runs to check if any clock
functions need to run. So, in the case of a 1ms tick rate, we want ledToggle() to run every
500 ticks. So, 499 times, we use an Hwi and a Swi for NOTHING – taking up precious
resources and CPU processing time not to mention disturbing the rest of the system with
interrupts we don’t need.

 For THIS example, where we are only toggling an LED every 500ms:

 ► What would be the best setting for the System tick rate? _______

 ► Given that tick rate, how many ticks do we set ledToggle() to run at? ________

 If you answered that the system tick should be set to 500ms which means our Clock Function
that calls ledToggle() is set to ONE, you are right. This is the tick rate that causes the least
disturbance in the force (sorry, Star Wars reference). And, to save power and not load up the
CPU with unnecessary interrupts, this is a wise choice.

 So, in your own system, always pick a tick rate that results in the FEWEST number of system
ticks given how often your Clock Functions need to run.

 Now, configure the Clock settings based on the numbers for this application.

 ► Click on Clock in your .cfg file and click Module:

 All settings are set to their default.

 ► Change the tick rate and pick ANY timer. At this point, we are not using any other timers,
so ANY works. If you wanted to use a SPECIFIC timer, you can via the dropdown box.

 ► Save .cfg.

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 14 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

6. MSP430, CC2650, TM4C Users Only – see “clock tick suppression” option.

 Click the down arrow next to “Tick mode” in the Clock configuration to see the following:

 No need to change the option now – just wanted you to see where this option exists in the
CFG file. MSP430/M3/M4 devices often sleep for long periods of time. What wakes it up? An
interrupt. A clock tick is an interrupt. Well, what if it was just a tick with nothing to do? It
wakes up the processor and does nothing – not good. So, when you choose this option,
BIOS will keep the interrupt from firing IF there are no clock functions to run on that tick. Very
nice.

7. ALL USERS – Add a new Clock Function.

 ► Right-click on Clock in the outline view and add a “New Clock”. (The author would like this
to say “New Clock Function” because you’re not adding a new Clock Module instance, but
rather a Clock Function).

 ► Name the new clock function (Handle): ledToggleClk

 ► Which function do you want to run when the timer hits zero? _______________

 ► Use this name as the Function.

 ► If the system tick is set to 500ms, how many ticks do you want to use for the Clock
Function? _______

 ► Set the initial timeout and period to this number.

 ► Make sure the checkbox to START the timer at BIOS_start() is checked:

Yes, this says “boot time”, but it means BIOS_start(). 

 ► Save .cfg.

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 15

8. Edit main.c to rid ourselves of unnecessary code.

 Because this is the solution from the previous lab, there is code to set up the timer and a
Timer_ISR() that we need to comment out (or delete).

 ► In hardware_init(), comment out the timer code (or delete it) – the C28x example is shown.

 PLEASE be careful not to delete any LED/GPIO setup code – we still need that:

 ► Then comment out or delete your ISR:

► Save main.c.

9. Delete BIOS Services that are not needed.

 Our previous solution contained an Hwi and a Swi. We don’t need those any longer. Yes, you
could simply delete the instances of Hwi and Swi, but your memory footprint will shrink if you
get rid of the services altogether. Cleanup.

 ► Right-click on both Hwi and Swi and stop using these services:

 ► Save .cfg.

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 16 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Build, load and run.

10. Build, load and run.

 ► Verify your LED is blinking. If not, it is debug time. Common mistakes include:

 System tick time has wrong value

 Clock function tick period has wrong value

 Wrong function was called from ledToggleClk Clock Function

 You forgot to check the box to START the timer

 If your code is still not working, ask a neighbor for help or your instructor.

Using TimeStamp (Benchmarking)

TimeStamp is a BIOS service that allows you to benchmark your code during runtime and then
display the results via the RTOS Analyzer when you halt. We will use Timestamp to gather the
data and Log_info() to display the data.

11. Add TimeStamp service to your app.cfg file.

 In the Available Products window, ► right-click on TimeStamp and select “Use Timestamp”:

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 17

12. Open Timestamp Service and view the properties.

 ► Click on the Timestamp Service in your Outline View.

 ► Then click on:

 You will now see another configuration screen:

 ► DO NOT CHECK ANY BOXES.

 Most users will see SOMETHING like this dialogue. If you had checked the box, you could tell
BIOS to combine the Clock’s timer with the TimeStamp Clock and/or choose a specific timer
for TimeStamp. We won’t use either of these settings, but now you know where to look.

13. View TimeStamp function calls to benchmark your ledToggle() routine.

 ► Locate your ledToggle() routine in main.c. We will need three 32-bit unsigned variables

to hold start, stop and delta values and two calls to Timestamp_get32() plus Log_info(). We
need three more variables to help calculate the overhead of Timestamp() itself.

 ► In ledToggle(), view the following 8 lines of code (as shown). Your code may look slightly
different because if you have if/else stmts and the benchmarks are buried inside the if. Each
architecture is different, so again, your code may look different. C28x example is shown:

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 18 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

14. View header file for Timestamp calls.

 ► Near the top of main.c, notice the header file required for Timestamp calls. If it is NOT
there, please add it:

 #include <xdc/runtime/Timestamp.h>

 .

15. Check to make sure Swi logging is enabled.

 ► Click on the LoggingSetup service in the .cfg file and make sure Swi Logging is enabled:

 ► If not, check it and save .cfg.

 If it is already checked, then move on to the next step.

 Swi logging will allow the RTOS Analyzer to track the Clock Swi and our Clock Function.
Without that box checked, we wouldn’t see our LED toggle routine running in the RTOS
Analyzer.

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 19

16. MSP430 USERS ONLY – Change Timestamp timer source from ACLK to SMCLK

 The default TimeStamp clock source is ACLK for the MSP430 which means the resolution is
32KHz. To get better resolution, you can change the TimeStamp clock source to SMCLK.

 ► From Available Products, right-click on Diagnostics  TimeStamp and select “Use”.

 ► In the Outline View, click on TimeStamp.

 ► Check the box next to “Add Timestamp …”.

 ► Click on “Device-specific Timestamp support”.

 The following dialogue will then appear:

 ► Check “Add the MSP430-specific …” box.

 ► Uncheck “Use Clock’s timer” box and choose SMCLK instead of ACLK.

 ► Save.cfg.

 FYI, your previous benchmark for the Swi was probably around 183uS which is 1500 cycles
which was not accurate because you were using a 32KHz clock as the source for the
analysis tools and you didn’t even know it. The real number was more like 1800 cycles. So, in
the future calculations and comparisons, just use 1800 cycles when it asks you for the “Swi
overhead” number you got in the previous lab.

 Now that you have changed Timestamp to use a more accurate clock (CPU Clock), you will
get more accurate results…

 Also please note the author increased the buffer sizes in LoggingSetup for you to 512 for

all loggers. That way you’ll see more than a few LED toggles in the graphs/log views. Say
“thank you”.

17. CC2650 USERS ONLY – add script to .cfg to use M3 SysTick timer for Timestamp.

 By default, CC26xx uses the RTC running at 32kHz for BOTH the Clock module and
Timestamp. This clock is NOT fast enough to count 48MHz cycles. SO, ► you need to add
one line of script code as shown in order to use the M3’s Systick timer running at CPU Clock
instead of using RTC (then save your .cfg file):

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 20 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

18. Build and fix errors.

 ► Build your project and fix any errors.

 ► When it is clean, load it, but don’t run yet. Again, we are going to only run for 5 blinks of
the LED and then halt.

 ► Run your code, verify the LED is blinking – and count to 5 – then halt.

 Any guesses as to how long the LED toggle took to run? Well, you should have a decent idea
from the previous lab.

19. Analyze benchmarks.

 ► Go back to your previous lab where you benchmarked your LED routine on the Execution
Graph and write down that benchmark here:

 value _________ units ________

 Now, to be fair, that benchmark included the Swi setup and takedown times (O/S stuff), so we
hope to see a number a little smaller than this because we’re picking the exact start and stop
points of the LED toggle vs adding in the context save/restore of the Swi, etc.

 ► What will be the units on this new benchmark using TimeStamp? ______________

 So, we have a units mismatch, but we can do the conversion. The first benchmark was in uS
(most likely) – whatever the Execution graph showed. However, this new benchmark will be
in CPU Cycles.

Notes about benchmarks. Keep these facts in mind…

a. All MCUs are running at some number of wait states in this workshop. The proper
number of “min wait states” were not set in the application code in order to simplify the
code and focus on the TI-RTOS (BIOS) concepts except for C28x. For example, the
C28x has settings in F2806x_SysCtrl.c in the InitFlash() routine that are being called to
set the min wait states for 90MHz. Therefore the code is running as fast as it can. So, the
benchmarks are simply an indication of performance but all code would have to be
tweaked based on your application frequency and your specific target.

b. We DO subtract out the benchmark of Timestamp() itself. However, keep in mind we are
using the DEBUG build configuration which has ZERO optimization turned on. Another
item that can add time to the benchmarks. Want to know more about all this? Go take
one of the architecture workshops available.

c. Both of the above items add up to much larger benchmarks than what you will see when
the flash wait states are properly set for your architecture and you turn on optimization.

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 21

20. Use RTOS Analyzer to observe the results.

 ► Open the RTOS Analyzer and find the benchmark for LED toggle. For the C28x, the
author saw THIS:

 ► Write down your BENCHMARK cycle count: A = ___________ CYCLES

 ► What frequency is your TimeStamp timer running at? B = _________ MHz

 ► What is the period of the TimeStamp timer? C = (1/B) __________ units _______

 ► Write down your BENCHMARK from previous lab: D = ___________ uS (or nS)

 ► Convert your previous lab benchmark for ledToggle to CPU CYCLES by dividing your
previous lab benchmark D by C to find E in CYCLES: E = (D/C) = ________ CYCLES

 ► How do “A” (Timestamp benchmark of LED/GPIO toggle ONLY) and “E” (Exec Graph
benchmark including Swi overhead – context save/restore, fxn overhead – code in ledToggle)
compare and why?

 __

 The answers that the author got for the C28x were as follows:

 3 cycles, 90MHz, 11.1ns, 11uS, 990 cycles including Swi overhead and ledToggle fxn code.
So, 3 vs. 990.

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 22 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

21. Benchmark the System Tick and LED toggle on the Execution Graph.

 ► Open the Execution Graph zoom out to see the results (C28x shown):

Note: You will often have to ZOOM OUT to see the results because the Clock Swi only
happens every 1/2sec !

 Well, we aren’t doing much other than running one Clock Function, so the graph is pretty
simple.

 ► If you measured the distance between each POST, what should the benchmark be?

 Well, this is the TICK RATE shown below. Notice the units are in ms with this type of view.
Now use the measurement marker and measure between the posts – what do you get?

 It should be something close to 500ms because that is the tick rate you set earlier in the
Clock module.

 Here is the C28x benchmark showing 500ms:

(ms)

 Lab 7 – Procedure – Blink LED Using Clock Swi

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7 - 23

 Well, but how long did the entire Clock Fxn take that called ledToggle() including all of the
overhead?

 ► Remove the measurement markers by right-clicking on the graph and selecting:

 Click on one of the posts (a red line will show up – if not, click twice) – this sets a zoom point
– and then zoom in until you see this:

 ► Expand the *OS display so you can see the Clock Function as shown.

 ► Benchmark between the Start and Stop points using the measurement markers.

 Write down your benchmark here: _________uS_ convert to CPU CYCLES: ___________

 For the C28x, the author got 21uS (1892 CPU cycles). What? Higher than the Swi from the
previous lab?

 To review, here are the benchmarks for the C28x that the author observed:

 Raw LED toggle measured in code: 3 CYCLES

 LED toggle via Swi (including Swi overhead only): 990 CYCLES

 LED toggle via Clock in this lab: 1892 CYCLES

 If you are having a tough time seeing CPU Load or other items in the Execution Graphs, you
can always LOAD the system with a dummy load like we used in your lab 2 main.c code.

 If you want, add a delay() function just after toggling the LED (you can find the code in your
main.c from Lab 2) and then re-build and run. See how this affects the graphs. This is an
optional step – just try it if you like. You could also drop the frequency of the device to 1/10
what it is now if you know how to do this…

 Now, what is the explanation of all of these numbers? We need a conclusion statement….

Lab 7 – Procedure – Blink LED Using Clock Swi

7 - 24 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

 Conclusion

 Here is the summary…

 The first low number measured the hardware toggle of the LED period. It included nothing
else in ledToggle and no O/S overhead time – this is just the hardware time to toggle the
GPIO pin on the board. Ok.

 The 2nd benchmark includes the Swi overhead, the extra code in the ledToggle() function and
the GPIO/LED toggle. But then when we use Clock, it is even higher….

 Why? Remember that Clock includes the Hwi (context switch), Swi (context switch) and any
other processing overhead for the actual Hwi code and the Swi code that BIOS used. So, the
fact that it is higher makes sense because we’re including more WORK in the benchmark.
This is all code you’d have to write anyway using a “bare metal” or driverlib approach – it is
just easier to configure and change priorities and then BUILD again when you have an O/S
like SYS/BIOS managing the scheduling. You can decide if this is right for you or not given a
full disclosure of timing and tradeoffs.

 What if you had 5 clock functions that were all running at one system tick? They are all called
from the context of a Swi – in fact, the SAME Swi – so you would see one post of the Swi and
one long Clock function representing those 5 Clock functions. Of course, if they were firing at
different rates, you could distinguish between them.

 Some people may say “this BIOS stuff adds a lot of overhead”. Well, two comments. First, to
do this on your own would take overhead – timer setup, ISR code, context switches, etc. And,
it’s usually not that flexible in terms of adding more threads alongside it. Also, compare the
time it took to set up a Clock function in BIOS vs. bare metal code. Using BIOS is, by far,
easier.

 This is the user’s decision – always. Use BIOS where it brings your system the best ease of
use and flexibility. If the overhead or latency is getting in the way of a critical interrupt or
timing, don’t use BIOS for that feature. We would always recommend doing everything in
BIOS first and then testing to see how things run – then go from there.

 Following is the table of results the author saw during lab development (all #s are in CPU
cycles):

 ► Terminate your debug session, close the project and files.

 You’re finished with this required part of this lab. If you have extra time, help a
neighbor – there is no better way to learn this stuff than to turn to someone else and

walk them through a tough spot in the lab. And, it feels good too.  Then, if you
still have time, watch your specific architecture videos….

 Lab 8: Using Tasks

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 23

Lab 8: Using Tasks

In this lab, you will add a Task and Semaphore via the Kernel’s CFG file to respond to the timer
Hwi. In the Hwi/ISR, you will post a semaphore to unblock the Task (ledToggle).

Probably THE easiest lab in this workshop. Aren’t you excited !!

The optional lab walks you through creating the Semaphore and Task dynamically. Great lab –
and if you don’t get through it all – well, that’s what “takehome” means. 

Lab 8 – “Blink LED” Using Task

main() {

init_hw();

Timer (500ms)

BIOS_start();

}

main.c

Hwi

Scheduler

Idle

Semaphore_post(LedSem);

Procedure

• Import archived (.zip) project (from Swi lab)

• Add Task object (for ledToggle)

• Build, “Play”, Debug

• Use ROV/UIA to debug/analyze

• Replace Hwi, Sem, Timer with Task_sleep()

• [OPTIONAL] (create Sem/Task dynamically)

 Time: 23.47 min

Hwi ISR

ledToggle() {

while(1) {

Semaphore_pend(LedSem);

Toggle_LED;

}

}

Task

ledToggleTask

Lab Goal:
The Hwi’s ISR will now post a
SEMAPHORE to unblock a Task

Lab 8 – Procedure – Blink LED Using Task

8 - 24 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 – Procedure – Blink LED Using Task

In this lab, you will import the Swi lab from ealier and add a Task and Semaphore. The
Timer_ISR() will post a Semaphore to unblock the new Task.

Some code will need to be added to ledToggle() to perform the while(1) loop and the
Semaphore_pend(). You will also need to add a new Semaphore to the BIOS CFG.

Using the Task and Semaphore, here is the new flow of events:

 Timer clicks down to zero and triggers the interrupt

 BIOS Hwi calls the Timer_ISR()

 In Timer_ISR(), a Semaphore is posted (LEDSem)

 LEDSem unblocks the Task (ledToggle) to blink the LED

 ledToggle() runs and toggles the LED and then returns back to Idle

A starter project has already been created for you.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

 ► Close any open projects (right-click Close Project) before moving on. With many main.c

and .cfg files floating around, it might be easy to get confused about WHICH file you are

editing.

► Also, make sure all file windows are closed.

2. Import existing project from \Lab_08.

 Just like last time, the author has already created a project for you and is contained in an
archived .zip file in your lab folder.

 Import the following archive from your \Lab_08 folder:

 Lab_08_TARGET_STARTER_blink_Task.zip

 ► Click Finish.

 The project “blink_TARGET_TASK” should now be sitting in your Project Explorer. This is the
SOLUTION of the Swi lab from before (not the CLK lab). If you’re having difficulties, try to
debug the problem for a few minutes and then ask for help from your neighbor.

 ► Make sure all of the latest tools are selected: compiler, XDC, TI-RTOS

 ► Expand the project to make sure the contents are correct. If all looks good…move on…

3. Build, load and run the project to make sure it works properly.

 We want to make sure the imported project runs fine before moving on. Because this is the
solution from the Swi lab, it should build and run.

 ► Build – fix errors.

 ► Then run it and make sure it works. If all is well, move on to the next step…

 Lab 8 – Procedure – Blink LED Using Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 25

Add a Task and Semaphore to the System

4. Get rid of the Swi in CFG file.

 We don’t need Swi in this lab, so delete it from your.cfg file. The other reason why we’re

doing this now is because this Swi calls ledToggle() and the Task we are about to add will
want to call the same function. So, we will avoid a few errors this way – delete, then add the
Task. Bottom line – we are replacing the Swi with a Task/Semaphore.

5. Add Task module and Task instance to your CFG file.

 ► In Available Products, right-click on Task and select “Use Task” or simply drag/drop the
service into your CFG file:

► Right-click on the Task module in the CFG file and add a “New Task…” named
ledToggleTask that calls ledToggle() at priority 1. Use whatever the default Task stack size is.

► Save your .cfg file.

 FYI – BIOS adds services implicitly for its own use. If you ever wanted to know what it added
“behind the scenes”, you can click on the following…

 ► You can see all of the locked/in-use implicit services in your system by selecting “Show
Configuration Results” – just hit the button below:

 ► If you expand ti.sysbios.knl, you’ll see the following (note: Task is NOT locked):

Lab 8 – Procedure – Blink LED Using Task

8 - 26 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

6. Add a new Semaphore to your CFG file.

 ► Add Sempahore to the Outline view. Via the GUI, you’ll find it under Synchronization:

 ► Then add a new instance with the following parameters:

 Handle: LEDSem

 Type: Counting (FIFO)

 Leave the rest as is…

 ► Save .cfg.

7. Modify ledToggle() to use the topology of a Task.

 Do you remember what the topology of a Task is? You will need to modify the ledToggle()
function to use a while(1) loop and a Semaphore_pend() just before the “process” – i.e.
toggling the LED.

 ► Modify ledToggle() by doing the following:

 Start a while(1) loop just before the first line of code that toggles the LED.

 Just after the beginning of the while(1) loop, add the function that pends on a

Semaphore using the proper Semaphore handle (use BIOS_WAIT_FOREVER as the

timeout)

Semaphore_pend (Your-Sem-Name, wait-value);

 PROCESS – ALL LED TOGGLE CODE GOES NEXT…

 Close the brace for the while(1) loop just AFTER the last line – the Log_info() call.

 ► Save main.c.

 Is that it? Is that all you need to do? Let’s review:

 Hardware Timer clicks down to zero and fires an interrupt

 Hwi responds to that interrupt and calls Timer_ISR()

 Timer_ISR() must POST the Semaphore that ledToggle() is pending on (OOPS,
forgot to do that)

 ledToggleTask is made ready to run

 ledToggleTask object calls ledToggle() when the Hwi returns (it is the highest priority
pending thread)

 ledToggle() runs through the while(1) loop once and stops again at the _pend.

 The whole thing starts over again…

 Lab 8 – Procedure – Blink LED Using Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 27

8. Add Semaphore POST to Timer_ISR().

 ► In the Timer_ISR(), delete the post of the Swi and post the proper Semaphore instead.

 Semaphore_post (Your-Sem-Name);

 ► Save main.c.

9. Edit LoggingSetup to make sure Semaphores are logged.

 ► Click on LoggingSetup in your CFG file and make sure the following is checked:

 ► Remove checkmark for Swi Context since we don’t need that any longer.

 ► Save .cfg.

10. View where BIOS sets the Idle stack size and default Task Stack size.

 The author stumbled into this one day. He knew that the thread Idle was truly the lowest
priority Task in the system – it is just a while(1) loop with no _pend and you can stick
functions into it. So, if it is a Task, it must have a stack. Right? But where is that specified?
MCU users want to limit footprint…so what if a user was wanting the smallest footprint
possible and was sniffing out every byte? Most users wouldn’t even think about the fact that
Idle has a stack and that MAYBE it is too big. Things that are hidden from the user is a sore
spot for the author…full exposure is the key here…

 Ok, I’m sure that this would be OBVIOUS if you had the Idle service added to the CFG file
and the tools would say “Idle stack is THIS big”. Yes? No. Also, the author thought, what if I
wanted to change the default Task stack size to something other than what the developers
have chosen for me – it would be easy to find, right? No.

 So, the author begged the BIOS team to make these things dumb-simple to find and they
have yet to do so. So, here is the trick…worth the price of admission to the workshop…

Lab 8 – Procedure – Blink LED Using Task

8 - 28 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

 ► Click on Task in your CFG file and then click on Module near the top:

 This is where the # max priorities are set, the Idle stack size and the default stack size for
each new Task. Heck, you can even define your own sections of memory to specifically place
these stacks into. A gold mine of info – right here on this page.

 Now you know…and you are armed with more info to help you design your system and
minimize footprint. The author is NOT a marketing guy – he’s an engineer…just like you… ;-)

Build, Load and Run

11. Build, load, run, verify.

 ► Run for 5 blinks. If the LED doesn’t blink, common mistakes are:

 Task is pointing to the wrong function

 Forgot to post or pend on the Semaphore (or wrong Semaphore name)

 Forgot to add the timeout parameter to the _pend

 Didn’t add a while() loop to ledToggle()

 Lab 8 – Procedure – Blink LED Using Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 29

Use ROV and UIA to Debug Code

12. Use ROV to see the new Task and Semaphore.

 ► Open ROV and click on Task and Semaphore to see the stats:

13. Open the Execution Graph to see the Task running.

 ► Open the Execution Graph, expand the + signs on the top left hand corner and zoom in
properly to see the Task running:

 Here, you see some pretty cool stuff:

 When the Semaphore is posted and pended

 Idle dominates the graph because we spend most of our time there

 You see the Task – ledToggle() running

 And something new – the Scheduler running (quite impressive)

14. Open the CPU Load Graph.

 ► Open the CPU Load to see that graph:

Lab 8 – Procedure – Blink LED Using Task

8 - 30 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

15. Sync the Execution Graph and System Log.

 This is a great feature of UIA. Here is the setup – you see something happening in the
Execution Graph that looks odd or you are curious to find out more. While the Execution
Graph shows things graphically, what if you wanted to know WHICH Semaphore was posted
or what was happening in and around the Semaphore post or pend?

 It sure would be nice to GROUP TOGETHER the system log and Execution Graph – when
you click on one, it syncs with the other. Well, you can…

 ► First, drag and drop the Live Session window above the rest so you can see the Live
Session view at the same time as the Execution Graph.

 ► Select the Enable Grouping button on the both Live Session and Execution Graph:

 ► Pick a zoom point around a post/pend of a Semaphore. Zoom in until your
graph looks similar to:

 ► Then, click around near the pend or post and watch the system log sync with the
execution graph – or vice versa. Here I can see that THIS Semaphore was posted (C28x
example shown – your 0xADDR will be different):

 The address shown is for the Semaphore that was posted at that time in the system. But
WHICH Semaphore? We only have one, so that’s an easy answer. What if you had 12
Semaphores? Knowing the address, you could then go look at ROV and find the Semaphore

with the address 0xa0a2 and that’s it. The author has requested an enhancement to show

the Semaphore HANDLE in the Raw Logs view or display it when you hover over the flag in
the graph. We’ll see if that ever happens… 

 Lab 8 – Procedure – Blink LED Using Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 31

16. View Task Loading in UIA.

 We only have one Task in the system, but this is a good way to see the loading of each Task
in your system – from highest to lowest.

 Task loading is not enabled by default in the System Analyzer, so we have to kill the current
analysis session, then turn on Task Loading, then re-start the session.

 ► Close the Live Session window which will prompt you to close the entire session.

 ► Restart your program and run again for 5 blinks.

 ► Select Tools  Execution Analysis

 The following dialogue window will open. Do you see the Execution Graph and CPU Load
enabled? Yep. If you look down the list, you’ll see the setting for Task Load. Check the box
next to Task Load and then along that same row, click on the … as shown:.

 When the next dialogue appears, check the boxes next to Graph and Summary:

 ► Click OK and then Start.

 If you get a message about the data being “partial”, just continue. We only have one
semaphore, so there is not much to see…but the point here is how to enable and access this
info in your own system later on.

 ► Open the Task Load Summary and Task Load Graph to see the results:

The Task Load Graph is difficult to see because Idle dominates at 99.99 percent so there is
one line at the top and one line at the bottom (ledToggleTask) – but you get the idea that you
could see all of your Tasks here and which ones have the biggest loads.

Lab 8 – Procedure – Blink LED Using Task

8 - 32 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

17. Use Task_sleep() to perform timer function in the lab.

 Remember Task_sleep() from the discussion material? Well, because Task_sleep()

allows a thread to sleep for “N” number of system ticks, it actually uses the BIOS Clock
Module’s timer to sleep (give up control of execution to a lower priority thread) and then wake
up to the Ready state and run when it has priority. In this example, we won’t need the Hwi,

Semaphore or timer code any longer – all can be replaced with a simple Task_sleep() call

in your Task…

 ► In main.c, make the following edits to your Task:

 Add Task_sleep(N); where N is the number of system ticks you want to sleep

 Remove the Semaphore_pend()

 ► In main.c, comment out the timer init code in hardware_init()

 ► In your .cfg file, remove the Semaphore and Hwi.

 ► Rebuild and run.

 By the way, how does this Task get called now that the Semaphore_pend() was removed?

 __

18. Learn how to use the file compare feature in CCS.

 As you may have figured out already, all of these labs have solution files. Your instructor may
have pointed to these before. However, if you have not yet done a file compare in CCS
before, it is quick and easy. Sure, many people use programs like Beyond Compare (like the
author does), but the service in CCS is something you should at least know about.

 First, ► import the solution for Lab 8.

 ► Select Project  Import CCS Projects…

 ► And browse to the \Sols folder and choose the solution for this lab (NOT 8B).

 Now, you can compare your main.c with the solution’s main.c and note any differences.

Wouldn’t it be great to have solutions already done for all the programs you need to write in
the future? ;-)

 ► Make sure each project (yours and the solution project) are expanded and you can see

main.c in both.

 ► Left-click on one main.c file and then Ctrl-click the other main.c.

 ► Right-click on one of the main.c files and select Compare With  Each Other.

 Note any differences – not that there will be many – especially if your lab is working properly.
But, now you know how to do this in CCS.

 Lab 8 – Procedure – Blink LED Using Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8 - 33

Using Simple Mode View in CCS

19. Explore the Simple Mode View in CCS.

 This view may or may not have been mentioned previously by your instructor. For users
migrating from Energia (Arduino) to CCS or migrating from another IDE that has one
perspective vs. two such as Edit and Debug.

 You, yourself may also PREFER a simpler view without losing much flexibility in the IDE and
menus. So, now it is time to try it out…

 ► Select View  Getting Started and select Yes in the box below:

 You should now see a new perspective pop up in the upper right-hand corner of CCS:

 ► Close the Getting Started window. Notice the changes in the view – the Debug window
and Project Explorer and the build and run/pause buttons are all in the same view.

 ► Rebuild your code, load and run it. Wow – all in one simple window.

 ► Go back to the regular two perspective view by reversing your steps – open Getting
Started and select “No” and then close the window.

20. Terminate your debug session and close the project.

 If you have time, move on to the optional lab where you will create the semaphore and
task dynamically. It’s a great lab…but only if you have time…or watch your architecture
videos…or help a neighbor get through their lab…or do nothing useful…

[Optional Lab] – Dynamic Module Creation

8 - 34 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

[Optional Lab] – Dynamic Module Creation

In this lab, you will import the solution for the Task lab from before and modify it by DELETING

the static declaration of the Task and Semaphore in the .cfg file and then add code to create

them DYNAMICALLY in main().

To access the optional lab, simply fast forward to Chapter 10’s Lab – it is the SAME exact lab.

Often times, there is not enough time in a workshop to actually teach Chapter 10 as well as
usually not an overwhelming interest. So, if you’re a fast lab person, you will gain some insight
into how to create TI-RTOS modules (semaphore, Task, etc.) by doing the optional lab.

► FAST FORWARD TO CHAPTER 10’s LAB NOW…

 Lab 9: Using Mailboxes and Queues

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9 - 23

Lab 9: Using Mailboxes and Queues

This lab has two parts:

 In Part A, you will add a Mailbox to the previous solution (Task) and pass the state of the LED

(on or off) via a mailbox.

 In Part B, you will pass the same value by using a Queue.

Some of the code has been done for you to avoid mistakes and typos – and in the Queue part,
some interesting casting is necessary to get it to work.

One of the side benefits of this lab is that you can compare/contrast mailboxes and queues.
Mailboxes are certainly more straight forward and do not require additional pointers – just using a
simple structure. But, Queues are more flexible.

Lab 9 – “Blink LED” Using Mailbox & Queue

main() {

init_hw();

Timer (500ms)

BIOS_start();

}

main.c

Hwi

Scheduler

Idle

Semaphore_post(Sem);

Procedure

• Import archived (.zip) project (starter code)

• Add Mailbox object + post/pend (for LED on/off)

• Build, “Play”, Debug

• Add Queue object + put/get (for LED on/off)

• Build, Run, Debug

 Time: 45 min

Hwi ISR

mailbox_queue(){

Post LED State to Mbx/Queue; }

Task
mailbox_queue()

Lab Goal:

The state of the LED (on or off) will
now be passed by Message (via a
Mailbox or Queue).

ledToggle(){

PEND on read from Mbx/Queue;

Toggle LED based on LED State;

}

ledToggle()

Task

Mailbox or Queue

Lab 9 – Procedure

9 - 24 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9 – Procedure

Part A – Using Mailboxes

In this lab, you will import the Task lab from earlier and add a new Task (for the mailbox setup
and _put) and modify the Semaphore to unblock the new mailbox_queue() Task function. The
Timer_ISR() will post this modified Semaphore to unblock the new Task.

Using the new mailbox code, here is the new flow of events:

 ledToggle() is STILL a Task so that it runs at BIOS_Start() and then pends on the

Mailbox_pend() waiting for the other Task (mailbox_queue) to post the msg.

 A new Task (mailbox_queue_Task) is added to the system to manage the mailbox.

 Timer clicks down to zero and triggers the interrupt

 BIOS Hwi calls the Timer_ISR()

 In Timer_ISR(), a Semaphore is posted (mailbox_queue_sem)

 Mailbox_queue_sem unblocks the mailbox_queue()Task to create the MSG (LED

on or off) and puts it in the mailbox.

 The Mailbox_pend() in the ledToggle() Task runs and toggles the LED and then

returns back to Idle

A starter project has already been created for you. Note: you will now have TWO Tasks and TWO
Semaphores. Keep this in mind as you go through this lab.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

► Close any open projects (right-click Close Project) before moving on. With many main.c

and .cfg files floating around, it might be easy to get confused about WHICH file you are

editing. ► Also, make sure all file windows are closed.

2. Import existing project from \Lab_09.

 Just like last time, the author has already created a project for you and is contained in an
archived .zip file in your lab folder.

 Import the following archive from your \Lab_09 folder:

 Lab_09_TARGET_STARTER_blink_MBX_QUEUE.zip

 ► Click Finish.

 The project “blink_TARGET_MBX_QUEUE” should now be sitting in your Project Explorer.
This is the SOLUTION of the Task lab from before plus some extra code for using mailbox
and queue.

 ► Via Properties, ensure all of the latest tools (TI-RTOS, XDC, compiler) are selected.

 ► Expand the project to make sure the contents are correct. If all looks good…move on…

Note: Because this is one of the last labs in the workshop, the author decided to not hand-hold
as much and make you THINK a little bit more about what you’re doing. The lab diagram
of flow of information and the explanation at the top of this page should help. But this will

be a challenging lab to get working. There – your expectations are set. 

 Lab 9 – Procedure

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9 - 25

SETUP – Create Message Object and Add Mailbox to BIOS CFG

3. Open main.c for editing and peruse the new code.

Hint: FYI – if you build the code right now, you will get errors. So just wait until the instructions
say to “build” – you know – READ THE FINE MANUAL. 

 ► Open main.c and start near the top in the globals declaration area.

 The first thing you have to do to get a Mailbox set up is to declare the Message Object itself:

 A mailbox message can contain anything you like but is FIXED in size. Soon, you’ll need to

add a Mailbox to the .cfg file and configure the size of each message and the length. Here,

we are only using a single integer to define the value or STATE of the LED – either ON (1) or
OFF (0).

 ► Uncomment the structure for MsgObj. You now have a typdef named “MsgObj” that you
can later create an instance of to use in the code and a pointer to this object named *Msg.

4. Add Mailbox to your app.cfg file.

Hint: Mailbox is a synchronization service in BIOS (and so is Queue).

 ► Add a new instance of Mailbox named “LED_Mbx” to your .cfg file.

 ► Then configure it using a size of 4 (chars) = 32 bits and two messages. We’ll only be using
ONE message, but that’s ok. More is always better, eh?

 LED_Mbx can now contain one or two instances of the MsgObj’s declared in the global area.

Lab 9 – Procedure

9 - 26 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

SENDER – Create a New Task for Message Management Fxn

5. Create a new Task and Semaphore for Mailbox management.

 When the Timer_ISR() fires, we need to create a value (on or off) that we can send to the

existing ledToggle() Task which will actually toggle the LED. So, we created a new Task

function named:

 mailbox_queue()

 This function will serve as our Mailbox and Queue “manager” in order to create the LED state
value (0 or 1) and place it in the BIOS container – either a Mailbox or a Queue.

 Notice that the structure of this function is a Task with a while(1) loop and a

Semaphore_pend(). We need to do two things – first register this function as a Task and

then create a semaphore for the Timer_ISR() and mailbox_queue() to use for

synchronization.

 ► Register mailbox_queue() fxn as a Task named mailbox_queue_Task with Pri = 2.

 Your starter .cfg file already had a semaphore in it from the last lab – LEDSem.

 ► Simply change the name of this semaphore to mailbox_queue_Sem and use it

appropriately in the ISR and new mailbox_queue() Task code.

 Again, when the ISR triggers, we want mailbox_queue() to unblock, create the LED state

and post it to the mailbox which then unblocks ledToggle() to actually write the value to

the GPIO pins.

6. Uncomment instance of MsgObj.

 Near the top of the new function – mailbox_queue() – you’ll see the creation of an

instance (msg) of type MsgObj:

 ► Uncomment this declaration so that we can use “msg” and its element “val” to effectively

toggle its state and send that state to ledToggle() via the new Mailbox.

 You’ll also see where the LED state is managed via an exclusive OR. First, we set the initial
state to “1” and then simply toggle the state each time through the loop.

 This is the info posted to the Mailbox for ledToggle().

 Lab 9 – Procedure

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9 - 27

SENDER – Post the Message to the Mailbox

7. Use Mailbox_post() to post the msg to the Mailbox.

 Further down in the mailbox_queue() function, you’ll see the following:

 Now that the actual Message (MsgObj) has been filled with the LED state (1 or 0), it is now
time to post this message into the Mailbox you created earlier.

 ► Uncomment this line of code and replace the ??? with the proper name of the Mailbox

instance. Mailbox_post() has a built-in semaphore and will block if the Mailbox is full. In

our case, we created two messages in the Mailbox and are only using one – so it shouldn’t
ever block.

RECEIVER – Receive the Message and Toggle the LED

8. Create an instance for MsgObj in the RECEIVER.

 Near the top of the ledToggle() Task, you will see the following:

 This MsgObj – instantiated as “msg”, will be used for both the mailbox and queue parts of the

lab. Remember when we said Mailbox was COPY-BASED and that each thread had its own
copy of the message? Well, this is WHY we have to create the same msg using the type
MsgObj in the receiver just like in the sender – because it is copy based and each thread has
to allocated memory to hold the message. This is why it is a good idea to pass POINTERS or
small scalars instead of buffers via a Mailbox.

 ► Uncomment this declaration.

9. Use Mailbox_pend to receive the message.

 Below the while(1) loop, you’ll see the following code:

 When Mailbox_post() posts the message into the Mailbox, this will unblock this _pend

and read the Message into the structure of “msg”. The element “val”, i.e. “msg.val” will

contain the state of the LED we want to use.

 ► Uncomment the call to Mailbox_pend() and replace the ??? with the instance name of

the Mailbox.

Lab 9 – Procedure

9 - 28 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

10. Use the proper “if” statement for the mailbox lab.

 ► Uncomment the proper “if” statement for the mailbox version of the lab.

 You can then use this value to either turn ON or OFF the LED. The rest of the LED “toggle”
code was left from the previous lab – although some code was modified to replace the
“toggle” capability with “set or clear” in order to use the value 0 or 1 to set the state of the
LED.

SEND/RECEIVE – MAILBOX – Build, Load, and Run

11. Build, load and Run your code.

 ► Clean your project first.

 ► Build and fix any errors.

Note: The author experienced some odd behavior when using CCSv5.5 and the latest
XDC/BIOS tools in preparing this lab. Sometimes, I would get 9 errors that seemed
erroneous – as if the CFG file was not being updated as part of the build. So, when I
cleaned the project first, all errors went away except for a few that were “real” that

needed to be fixed. Fair warning.

 When you have a clean build, ► load the .out file to the target and run. If your LED blinks
properly, you’re in good shape. If not, it is debug time. Usually it is a good idea to set a
breakpoint near the “if” statement in ledToggle() to check the state of the msg.val. This may
help narrow the problem.

 After a period of 5-10min of unsuccessful debugging, you may want to either ask a neighbor

for help or look at the main.c file from the solution.

 ► How many semaphores are used in this example? ______

 There are 3. One of them can be found in ROV under Semaphore – this is the one you
created yourself. There are two more created by Mailbox…

 ► Look at ROV under Mailbox->Raw->Instance States->LED_Mbx->dataSem and -
>freeSem.

 freeSem is used to ensure the mailbox does not overflow – i.e., there is ROOM in the

mailbox for another post. It has an initial count equal to the number of messages allowed in
the mailbox (2 in this case). The SENDER (post) pends on this before loading a message into
the mailbox – if it is full, it blocks. The Receiver posts this semaphore when it takes a
message out of the mailbox, thus freeing a space.

 dataSem semaphore is posted when data is put into the mailbox by the SENDER and the

RECEIVER pends on this semaphore waiting for a message to arrive.

 If you want, you can open the Execution Graph and see all these semaphores in action.

 Queues are a little more straightforward in terms of semaphores, so let’s go try them as
well…

 If everything looks good…move on to Part B…

 Lab 9 – Procedure

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9 - 29

Part B – Using Queues
 The steps in this part of the lab will be similar. The procedure of setting up a Queue is almost

identical to using a Mailbox:

 Define a Message (same as mailbox but with Queue_Elem as the first element).

 Create an instance of a Queue Object (similar to Mailbox)

 Create a POINTER to this Message – this is different – but Queues pass POINTERS to

the Messages in the Queue – more efficient than a Mailbox

 Send the Message via a Queue_put() followed by a Semaphore_post() to signal the

other thread that “they have mail”.

 Semaphore_pend() in the second thread until the Message is in the Queue and then

perform a Queue_get() to get the message.

 Again – all of this is done via POINTERS vs. actual data like with Mailbox.

SETUP – Create the Queue Message Object and Queue Instance

12. Create the Message Object for a Queue Message

 In the global declaration area of main.c,

 ► comment out the old MsgObj for Mailbox and

 ► uncomment the version for the Queue Message:

 Notice the addition of Queue_Elem as the first element. This element contains the next and

previous pointers required by Queues because they are double-linked lists. Also remember
that a Queue is simply an object with a head and tail pointer – it takes very little memory.
When a msg is POSTED into the queue, the next/previous pointers of the message itself
(inside elem above) are modified, so this list can grow or shrink however big you like.

13. Create an Instance of a Queue in app.cfg.

 In .cfg, ► add a Queue and name the instance “LED_Queue”.

 Notice there is no SIZING field. Once you create a Queue Message, it can contain anything
you like and you are simply handing a pointer to the message via put/get. Very efficient and
flexible. But, it takes a little more work because it is pointer-based.

Lab 9 – Procedure

9 - 30 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

14. Create a pointer to the Queue Message and initialize the pointer.

 In mailbox_queue(),

 ► uncomment the following code:

 Notice here that we have created an instance “msgp” which is of type “pointer to MsgObj”.

For experienced C programmers, this is no big deal – they say “of course this is what you do”
(maybe they really know or maybe they are protecting their reputation). ;-)

 For those less fortunate (the author is not a C guru), this part was a bit troublesome until a C
guru taught the author the how’s and why’s of this. Then we initialize the pointer to the

address of msg.

SENDER – Put Message in Queue and Post a Semaphore

The next few lines of code are still necessary – managing the state of the LED switch – on or off.

We still change the value of msg.val each time through the loop. The Task is STILL unblocked

by the Semaphore (mailbox_queue_Sem) just as before.

15. Create a new Semaphore to signal the other thread.

 After putting the Message in the Queue, we need to signal the other thread – ledToggle()

– that a Message is IN the Queue. If you remember from the discussion material, Queues
have no built-in signaling like a Mailbox does. So, we need a Semaphore.

 ► In .cfg, add another Semaphore named “QueSem”.

16. Next, we need to put the Message in the Queue and post the new Semaphore.

 ► First, in mailbox_queue(), comment out the old Mailbox_post().

 ► Then uncomment these two lines of code:

 Ah – the ??? things show up again. At this point no help is provided.

 ► Fill in the ??? appropriately.

 Notice that, as was stated before, Queues require POINTERS – hence the THING we are

putting into the Queue is “msgp” which is a POINTER to the Message. And, like BIOS

sometimes does, it requires a bit of casting as shown.

 Honestly, it took the author a bit of time to figure that one out (he blames Mr. Kernighan and
Mr. Ritchie for this) – but the example in the SYS/BIOS User Guide did help.

 Lab 9 – Procedure

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9 - 31

RECEIVER – Receive the Message and Toggle the LED

17. Create pointer to Queue Message in Receiver.

 In ledToggle(), ► uncomment these two lines:

 Just like before, we need to create a pointer to the Queue Message. Queue_get() returns

the pointer to the message so we can extract the LED state.

18. Add Semaphore_pend() and Queue_get() to Receiver code.

 ► Comment out the old call to Mailbox_pend().

 Because Queue’s have no signaling built in, we have to use a Semaphore_pend() to WAIT

for the SENDER to post that Semaphore to unblock us so that we can go read the Message
from the Queue.

 ► Uncomment the following code and fill in the ???:

 msgp is the pointer to the Message sent to us by the Sender.

 msgpval would then contain the value – either 0 or 1.

19. Change “if” statement to use the proper syntax of msgpval.

 Comment out the Mailbox “if” statement and uncomment the one used for the Queue.

SEND/RECEIVE – QUEUE – Build, Load, and Run

20. Build, load and Run your code.

 ► Clean your project first, then build and fix any errors.

 When you have a clean build, ► load the .out file to the target and run. If your LED blinks
properly, you’re in good shape. If not, it is debug time.

 After a period of 5-10min of unsuccessful debugging, you may want to either ask a neighbor

for help or look at the main.c file from the solution.

21. Close the Project and Close CCS – that’s the last lab (maybe).

 You should pat yourself on the back – this was one of the harder labs in the workshop and
now you’re done with ALL of the labs unless the class chooses to go through the Dynamic
Memory Chapter and the lab. But still – pat yourself on the back. Help a neighbor or watch
the architecture videos or just GO HOME. Congrats… ;-)

 Lab 10: Using Dynamic Memory

TI-RTOS Workshop - Using Dynamic Memory 10 - 23

Lab 10: Using Dynamic Memory

You might notice this system block diagram looks the same as what we used back in Lab 8 –
that’s because it IS.

We’ll have the same objects and events, it’s just that we will create the objects dynamically
instead of statically.

In this lab, you will delete the current STATIC configuration of the Task and Semaphore and
create them dynamically. Then, if your LED blinks once again, you were successful.

Lab 10 – Creating Task/Sem Dynamically

main() {

init_hw();

Timer (500ms)

BIOS_start();

}

main.c

Hwi

Scheduler

Idle

Semaphore_post(LedSem);

Procedure
• Import archived (.zip) project (from Task lab)

• Delete Task/Sem objects (for ledToggle)

• Write code to create Task/Sem Dynamically

• Build, “Play”, Debug

• Use ROV/UIA to debug/analyze

 Time: 30 min

Hwi ISR

ledToggle() {

while(1) {

Semaphore_pend(LedSem);

Toggle_LED;

}

}

Task

ledToggleTask

Lab 10 – Procedure – Using Dynamic Task/Sem

10 - 24 TI-RTOS Workshop - Using Dynamic Memory

Lab 10 – Procedure – Using Dynamic Task/Sem

In this lab, you will import the solution for the Task lab from before and modify it by DELETING

the static declaration of the Task and Semaphore in the .cfg file and then add code to create

them DYNAMICALLY in main().

Import Project

1. Open CCS and make sure all existing projects are closed.

 ► Close any open projects (right-click Close Project) before moving on. With many main.c

and .cfg files floating around, it might be easy to get confused about WHICH file you are

editing.

► Also, make sure all file windows are closed.

2. Import existing project from \Lab_10.

 Just like last time, the author has already created a project for you and it’s contained in an
archived .zip file in your lab folder.

 Import the following archive from your \Lab_10 folder:

Lab_10_TARGET_STARTER_blink_Mem.zip

 ► Click Finish.

 The project “blink_TARGET_MEM” should now be sitting in your Project Explorer. This is the
SOLUTION of the earlier Task lab with a few modifications explained later.

 ► Make sure all of the latest tools are selected: compiler, XDC and TI-RTOS.

 ► Expand the project to make sure the contents look correct.

3. Build, load and run the project to make sure it works properly.

 We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab, well, it should build and run.

 ► Build – fix errors.

 ► Then run it and make sure it works. If all is well, move on to the next step…

 If you’re having any difficulties, ask a neighbor for help…

 Lab 10 – Procedure – Using Dynamic Task/Sem

TI-RTOS Workshop - Using Dynamic Memory 10 - 25

Check Dynamic Memory Settings

4. Open BIOS  Runtime and check settings.

 ► Open .cfg and click on BIOS Runtime.

 ► Make sure the “Enable Dynamic Instance Creation” checkbox is checked (it should already
be checked):

 ► Check the Runtime Memory Options and make sure the settings below are set properly for
stack and heap sizes (modify as necessary).

 We need SOME heap to create the Semaphore and Task out of, so 256 is a decent number
to start with. We will see if it is large enough as we go along.

 ► Save .cfg.

 The author also wants you to know that there is duplication of these numbers throughout the

.cfg file which causes some confusion – especially for new users. First, BIOS Runtime is

THE place to change the stack and heap sizes.

 Other areas of the .cfg file are “followers” of these numbers – they reflect these settings.

Sometimes they are displayed correctly in other “modules” and some show “zero”. No
worries, just use the BIOSRuntime numbers and ignore all the rest.

 But, you need to see for yourself that these numbers actually show up in four places in the

.cfg file. Of course, BIOSRuntime is the first and ONLY place you should use.

 ► However, click on the following modules and see where these numbers show up (don’t
modify any numbers – just click and look):

 Hwi (Module) – not the INSTANCE

 Memory (MSP430 and TM4C only)

 Program

 Yes, this can be confusing, but now you know. Just use BIOSRuntime and ignore the other
locations for these settings.

Hint: If you change the stack or heap sizes in any of these other windows, it may result in a
BIOS CFG warning of some kind. So, the author will say this one more time – ONLY use
BIOS  Runtime to change stack and heap sizes.

Lab 10 – Procedure – Using Dynamic Task/Sem

10 - 26 TI-RTOS Workshop - Using Dynamic Memory

Inspect New Code in main()

5. Open main.c and inspect the new code.

 The author has already written some code for you in main(). Why? Well, instead of making

you type the code and make spelling or syntax errors and deal with the build errors, it is just
easier to provide commented code and have you uncomment it. Plus, when you create the
Task dynamically, the casting of the Task function pointer is a bit odd.

 ► Open main.c and find main().

 ► Inspect the new code that creates the Semaphore and Task dynamically (DO NOT
UNCOMMENT ANYTHING YET):

 As you go through this lab, you will be uncommenting pieces of this code to create the
Semaphore and Task dynamically and you’ll have to fill in the “????” with the proper names
or values. Hey, we couldn’t do ALL the work for you. 

 Also notice in the global variable declaration area that there are two handles for the
Sempahore and Task also provided.

 In order to use functions like Semaphore_create() and Task_create(), you will need to
uncomment the necessary #include for the header files also.

Delete the Semaphore and Add It Dynamically

6. Get rid of the Semaphore in app.cfg.

 ► Remove LEDSem from the .cfg file and save .cfg.

7. Uncomment the two lines of code associated with creating LEDSem dynamically.

 ► In the global declaration area above main(), uncomment the line associated with the

handle for the Semaphore and name the Semaphore LEDSem.

 ► In main(), uncomment the line of code for Semaphore_create() and use the same

name for the Semaphore (the return value of the _create call is the Semaphore handle).

 ► In the #include section near the top of main.c, uncomment the #include for

Semaphore.h.

 ► Save main.c.

 Lab 10 – Procedure – Using Dynamic Task/Sem

TI-RTOS Workshop - Using Dynamic Memory 10 - 27

Build, Load, Run, Verify

8. Build, load and run your code.

 ► Build the new code, load it and run it for 5 blinks.

 Is it working? If not, it is debug time. If it is working, you can move on…

9. Check heap in ROV.

 So, how much heap memory does a Semaphore take? Where do you find the heap sizes and
how much was used? ROV, of course…

 ► Open ROV and click on HeapMem (the standard heap type), then click on Detailed:

 So, in this example (C28x), the starting heap size was 0x100 (256) and 0xd0 is still free

(208), so the Semaphore object took 48 16-bit locations on the C28x (assuming nothing else
is on the heap). Well, there ARE other items placed on the heap before the Semaphore was
created. 10-20 hex is required for exit/atexit() functions – so the Semaphore itself really only
takes 10h bytes – or 16 bytes. Ok – that is more reasonable and matches the object definition

in Sempahore.h as well.

 Note that your “mileage may vary” on the sizes here depending on your architecture. The
easiest way to check how big the Semaphore object is on the stack is to set a breakpoint on

the Semaphore_create() function and on the next line of code and check the ROV sizes in

each case.

 ► Restart the code and set a breakpoint on the Semaphore_create() call AND set

another breakpoint on the next line of code.

 ► Click Run and open up ROV.

 ► What is the free size available on the heap? _________

 ► Click Run again (to create the Semaphore).

 ► What is the free size available on the heap? _________

 ► Subtract the last two values you wrote down (e.g. 0xf0 – 0xe0) and you get? _________

 This is the size of the Semaphore object for YOUR specific architecture. You should get
about 10h or 16 locations (16-32 bytes).

 Ok. So, we didn’t run out of heap. Good thing.

 ► Write down how many bytes your Semaphore required here: _____________

 ► How much free size do you have left over? ____________

 So, when you create a Task, which has its own stack, if you create it with a stack larger than
the free size left over, what might happen?

 Well, let’s go try it…(oh, and remember the Error Block thing? Is it being passed? What
happens if you don’t pass eb and you get NULL as the pointer? You are about to find out…)

Lab 10 – Procedure – Using Dynamic Task/Sem

10 - 28 TI-RTOS Workshop - Using Dynamic Memory

Delete Task and Add It Dynamically

10. Delete the Task in app.cfg.

 Remove the Task from the CFG file and save .cfg.

11. Uncomment some lines of code and declarations.

 ► Uncomment the #include for Task.h.

 ► Uncomment the declaration of the Task_Handle and fill in ???.

 ► Uncomment the code in main() that creates the Task (ledToggleTask) and fill in the

???? properly.

 ► Uncomment Task_Params declaration

 ► Create the Task at priority 2.

 ► Save main.c.

12. Build, load, run, verify.

 ► Build and run your code for five blinks. No blink? Read further…

 ► Halt your code.

 Your code is probably sitting at abort(). How would the author know that? Well, when you

create a Task, it needs a stack. On the C6000, the default stack size is 2048 bytes. For C28x,
it is 256.

 You probably aborted with a message that looks similar to this (or Error_policySpin):

Just look at the call stack (C28x shown below) in the Debug window to see the progression of
problems and errors from the Task_create() all the way “upwards”:

 What happened? Two things. First, your heap is not big enough to create a Task from
because the Task requires a stack that is larger than the entire heap! ;-) Also, did you pass

an error block in the Task_create() function? Probably not. So, what happens if you get a

NULL pointer back and you do NOT pass an error block? BIOS aborts. Well, that’s what it
looks like.

 Lab 10 – Procedure – Using Dynamic Task/Sem

TI-RTOS Workshop - Using Dynamic Memory 10 - 29

13. Open ROV to see the damage.

 ► Open ROV and click on Task. You should see something similar to this:

 ► Look at the size of “stackSize” for ledToggle (name may or may not show up).

This screen capture was for C28x, so your size may be different (probably larger).

 ► What size did you set the heap to in BIOS Runtime? __________ bytes

 ► What is the size of the stack needed for ledToggle (shown in ROV)? __________ bytes

 Get the picture? You need to increase the size of the heap…

14. Go back and increase the size of the heap.

 ► Open BIOSRuntime and use the following heap sizes:

 C28x: 1024

 C6000: 4096

 MSP430: 1024

 TM4C: 4096

 CC2650 1024

 We probably don’t need THIS large of a heap for this application – it could be tuned better –
we’re just using a larger number to see the application work. Remember, you can always run
your system and check ROV and then tune accordingly based on used vs. total heap/stk size.

 ► Save .cfg.

15. Wait, what about Error Block?

 In a real application, the user has a choice whether to use Error Block or not. For debug
purposes, maybe it is best to leave it off so that your program aborts when the handle to the
requested resource is NULL. If you don’t like that, then use Error Block and check the return
handle and deal with it however you choose – user preference.

 In our lab, we chose to ignore Error Block, but at least you know it is there, how to initialize
one and how it works.

16. Rebuild and run again.

 Rebuild and run the new project with the larger heap. Run for 5 blinks – it should work fine
now.

17. Terminate your debug session, close the project.

 You’re finished with this optional lab. Help a neighbor who is struggling with the first lab – you
know you KNOW IT when you can help someone else – and it’s being a good neighbor.
You’ve heard this before….somewhere…or just be selfish and watch your architecture
videos… ;-) Or be more selfish and check your email…

Notes

10 - 30 TI-RTOS Workshop - Using Dynamic Memory

Notes

*** the very end ***

	MA_RTOS_00_Cover_STUDENT_GUIDE
	Notice
	Revision History

	MA_RTOS_01_Welcome
	Welcome
	Chapter Topics
	TI-RTOS Workshop – Welcome & Introduction
	Administrative Topics
	Workshop Objectives
	What We Won’t Cover – and Why…
	Workshop Outline
	Introductions

	TI Devices – Overview
	TI-RTOS
	What is TI-RTOS ?
	Where Can You Download the TI-RTOS SDK ?

	For More Info…
	Workshops and Online Resources

	BIOS Workshop Online…
	TI-RTOS Workshop – Online Videos

	Hands-on Lab Targets…
	Lab 1 – System Setup
	Lab 1 – Procedure
	Connect Your Hardware (EVM, LaunchPad) to the PC
	Launch CCS and Run “Blink LED”
	Terminate the Debug Session
	That’s it, You’re Done !

	Optional Lab – Exploring CCS Help – Procedure
	Notes…

	MA_RTOS_02_CCSv6
	Intro to Code Composer Studio - CCSv6
	Module Topics
	TI Software Ecosystem
	Run-Time Software

	Intro to CCSv6
	Functional Overview
	Editing
	Debugging

	Perspectives
	Target Config & Emulators
	JTAG Emulators
	Workspaces & Projects
	Some Final Notes about CCS/Eclipse

	Creating a Project
	Adding Files to a Project
	Portable Projects

	Compiler Options & Build Configurations
	Compiler Build Options
	Processor Options
	Debug Options
	Optimize Options (aka Release Options)

	Modifying Compiler Build Configurations

	Licensing/Pricing
	Overview
	Changing CCS User Licenses

	CCSv6 – For More Info…
	Lab 2 – CCSv6 Projects
	Lab 2 – Procedure
	Intro to TI-RTOS Workshop Files
	Create and Explore Your New CCS Project
	Add Libraries and Include Search Paths
	Explore the Blink LED Code
	Using the Target Configuration File
	Sidebar

	Build, Load, Run
	Launching the Debugger step-by-step
	Terminate
	Build, Load, Run … again
	Sidebar

	Add a Breakpoint
	Watch Variables and View Memory Contents
	Other Useful Debug/Editing Tips
	That’s It. You’re Done.

	[Optional] Exploring Build Properties
	[Optional] Creating Portable Projects
	Introduction to Portable Projects
	Part 1 – Watch the Video on Portable Projects
	Part 2 – Using VARS.INI – The Easier Method
	Part 3 – Add Vars Manually – The Harder Method
	That’s It. You’re Done.

	Tips – New Project Creation and Debug
	Appendix – Creating Portable Projects
	Portable Projects – Concepts
	Portable Projects – Two Types of Variables
	Portable Projects – Variable Scope

	Notes

	Portable Projects

	MA_RTOS_03_TIRTOS_Intro
	Intro to the TI-RTOS Kernel
	Module Topics
	What is the TI-RTOS Kernel?
	TI-RTOS Kernel – List of Services
	TI-RTOS Kernel – Characteristics

	TI-RTOS Scheduler
	Scheduling Problem
	Solution #1 – Use a Super Loop !
	Solution #2 – Use Timer-based Interrupts
	Solution #3 – Use NESTED Interrupts
	Solution #4A – Separate Process from ISR
	Solution #4B – The BIOS Scheduler
	Thread vs. Function
	The Scheduler – in Action

	Adding Tasks…
	TI-RTOS Kernel Services – Summary
	TI-RTOS Environment
	Kernel APIs, Objects and Handles
	Thread (Object) Creation in BIOS

	TI-RTOS Kernel Debugging Tools
	UIA and ROV – Intro
	UIA and ROV – Viewing Results in CCS

	For More Info…
	Chapter Quiz
	Quiz - Solution

	MA_RTOS_04_TIRTOS_Mechanics
	TI-RTOS Configuration
	Module Topics
	Creating A New BIOS Project
	CCS Project Creation – Choosing BIOS Template
	CCS Project Creation – Choosing BIOS Tools
	CCS Project Creation – Choosing Platform

	BIOS Configuration
	Adding a BIOS Service to CFG File
	Configuring a BIOS Service – Idle
	CFG Script Code vs. Using the GUI

	BIOS System Timeline
	UIA & RTOS Analyzer
	Configuring UIA & RTOS Analyzer
	Using Logs
	Using the Execution Graph
	Using CPU and Thread Loading

	Version Control
	Lab 4 – SYS/BIOS Blink LED
	Lab 4 – Procedure
	Create New blink_target_BIOS Project
	Project File Management
	Exploring & Editing BIOS Config File (.CFG)
	Additional Steps for C28x Users Only
	Build, Load and Run.
	Register ledToggle() as an Idle Thread Function
	Explore BIOS’ Sys Overview and Runtime Cfg
	Build, Load, Run
	Explore the RTOS Object Viewer (ROV)
	Add Unified Instrumentation Architecture (UIA) to the Project
	UIA – Build, Load and Run.
	That’s It, You’re Done !!

	[Optional Lab 4B] – Blink LED for MSP430 and Tiva-C
	Notes

	MA_RTOS_05_Hwi
	Using Hwi
	Module Topics
	Hardware Interrupts (Hwi) – Intro
	Fore/Background Scheduling – Hwi and Idle
	How Interrupts Work – Steps 1 & 2
	Enabling Interrupts
	How Interrupts Work – Steps 3 & 4

	Configuring an Hwi
	Configuring Static Hwi’s…
	Static Configuration – Tiva-C Series & MSP430
	Static Configuration – CC2650 & MSP-FR5969
	Static Configuration – C28x & C6000
	Enabling Nested Interrupts in BIOS

	Managing ISRs – Two Ways
	Using BIOS-Managed ISRs
	Using NON-BIOS-Managed ISRs
	Two Methods – Summary

	Hwi Benchmarks
	Interrupt Response Time
	How to Create an ISR Outside of BIOS

	Lab 5 – Using Hwi
	Lab 5 – Procedure
	Create a New SYS/BIOS Project
	Explore Source Files
	Determine Interrupt Number or Event Id
	Add The New Hwi
	Build, Load and Blink !
	Debugging With UIA and ROV

	Optional Lab – Using the BIOS Timer Module
	Archive Lab and Copy Project
	Add Timer to BIOS Cfg

	Notes

	MA_RTOS_06_Swi
	Using Swi's
	Module Topics
	Using Swi
	Introduction
	Posting Swi From an Hwi
	Scheduling Rules – Swi’s at Different Priorities
	Scheduling Rules – Swi’s at Same Priorities

	Swi – Configuration
	Other Useful Swi APIs
	Scheduling Strategies – FYI
	Lab 6: Blink LED Using a Swi
	Lab 6 – Procedure – Blink LED Using Swi
	Import Project
	Add a Swi to the System
	Add New ISR and Modify Hwi
	Build, Load and Run…
	Use UIA and ROV to Debug Application

	MA_RTOS_07_Clk
	Using Clock Functions & TimeStamp
	Module Topics
	Clock Module
	Can Time be an Event ?
	Clock Module – How it Works
	Clock Module – How to Configure It

	Clock Functions
	Clock Functions – How They Work
	Clock Functions – How to Configure Them

	Timestamp – How it Works
	TI-RTOS Kernel – Timer and Clock Usage
	Lab 7: Clock Functions & TimeStamp
	Lab 7 – Procedure – Blink LED Using Clock Swi
	Import Project
	Add a Clock and Clock Function to the System
	Build, load and run.
	Using TimeStamp (Benchmarking)

	MA_RTOS_08_Task
	Using Tasks and Semaphores
	Module Topics
	Using Tasks
	Intro
	Task – Topology
	Task – Configuration
	Modifying a Task’s Priority
	Scheduler – Adding Tasks…

	Swi vs. Task
	Using Semaphores
	Semaphore_pend()
	Semaphore_post()
	Semaphore – Configuration

	FIFO vs. Priority-Based Semaphores
	Other Useful APIs…
	Using Events
	Explicit Post/Pend
	Implicit Post/Pend

	Dynamic Module Creation
	Basic Concepts – Creating a Semaphore
	Creating a Task – Dynamically

	Using System_printf()
	Memory Footprint – MCU Targets
	Lab 8: Using Tasks
	Lab 8 – Procedure – Blink LED Using Task
	Import Project
	Add a Task and Semaphore to the System
	Build, Load and Run
	Use ROV and UIA to Debug Code
	Using Simple Mode View in CCS

	[Optional Lab] – Dynamic Module Creation

	MA_RTOS_09_ITC
	Inter-thread Communication
	Module Topics
	Introduction
	Overview of the Problem
	Resource Sharing – Two Models

	“Producer-Consumer” Model
	Intro
	Using Queues – Concepts
	Using Queues – Synchronizing Queues
	Using Queues – To Create a Peripheral Driver…
	Using Mailboxes

	“Concurrent Access” Model
	Intro
	Using Globals
	What is a “Critical Section” ?
	Critical Section – Modifying Scheduler Behavior
	Using MUTEXs – Intro
	Using MUTEX Gates…
	Priority Inversion
	Priority Inversion – Solution #1 – Elevate Priority
	Priority Inversion – Solution #2 – Mutex Gates
	What is Deadlock?
	Same Priority Threads

	Lab 9: Using Mailboxes and Queues
	Lab 9 – Procedure
	Part A – Using Mailboxes
	Import Project
	SETUP – Create Message Object and Add Mailbox to BIOS CFG
	SENDER – Create a New Task for Message Management Fxn
	SENDER – Post the Message to the Mailbox
	RECEIVER – Receive the Message and Toggle the LED
	SEND/RECEIVE – MAILBOX – Build, Load, and Run

	Part B – Using Queues
	SETUP – Create the Queue Message Object and Queue Instance
	SENDER – Put Message in Queue and Post a Semaphore
	RECEIVER – Receive the Message and Toggle the LED
	SEND/RECEIVE – QUEUE – Build, Load, and Run

	Notes

	MA_RTOS_10_Mem
	Using Dynamic Memory
	Module Topics
	Dynamic Systems – Introduction
	Static vs. Dynamic
	Enabling Dynamic Instance Creation – CFG File

	Dynamic Memory Concepts
	Using a Heap
	Code Example #1 – Static vs. Dynamic Coding
	Two Heaps Are Better Than One
	Code Example #2 – Std Heap vs. BIOS Heaps
	Creating A Heap

	Different Types of Heaps
	Introduction
	HeapMem – the “Standard C” Heap
	HeapBuf – Use to Allocate Fixed-Sized Buffers
	HeapBuf – Concepts
	HeapBuf – Creating a HeapBuf
	HeapBuf – Can You Use Multiple HeapBufs?

	HeapMultiBuf
	Default System Heap

	Dynamic Module Creation
	Example – Creating a Semaphore Dynamically
	Example – Creating a Task Dynamically

	What is this “Error Block” Thing?
	Custom Section Placement
	Introduction
	Making Custom Sections
	Linking Custom Sections

	Lab 10: Using Dynamic Memory
	Lab 10 – Procedure – Using Dynamic Task/Sem
	Import Project
	Check Dynamic Memory Settings
	Inspect New Code in main()
	Delete the Semaphore and Add It Dynamically
	Build, Load, Run, Verify
	Delete Task and Add It Dynamically

	Notes

	MA_RTOS_00_Cover_LAB_MANUAL.pdf
	Notice
	Revision History

	LAB_1_NEW.pdf
	Welcome
	Chapter Topics
	TI-RTOS Workshop – Welcome & Introduction
	Administrative Topics
	Workshop Objectives
	What We Won’t Cover – and Why…
	Workshop Outline
	Introductions

	TI Devices – Overview
	TI-RTOS
	What is TI-RTOS ?
	Where Can You Download the TI-RTOS SDK ?

	For More Info…
	Workshops and Online Resources

	BIOS Workshop Online…
	TI-RTOS Workshop – Online Videos

	Hands-on Lab Targets…
	Lab 1 – System Setup
	Lab 1 – Procedure
	Connect Your Hardware (EVM, LaunchPad) to the PC
	Launch CCS and Run “Blink LED”
	Terminate the Debug Session
	That’s it, You’re Done !

	Optional Lab – Exploring CCS Help – Procedure
	Notes…

