Laplace transforms: Critically Damped Motion: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 21: Line 21:
<math>\text {x(0)=0}\,</math>
<math>\text {x(0)=0}\,</math>


<math>\dot{x}(0)=0</math>
<math>\dot{x}(0)=-3</math>


<math>\text {Therefore the equation representing this system is}\,</math>
<math>\text {Therefore the equation representing this system is}\,</math>
Line 34: Line 34:
<math>\text {Now that we have the equation written in standard form we need to send}\,</math>
<math>\text {Now that we have the equation written in standard form we need to send}\,</math>
<math>\text {it through the Laplace Transform}\,</math>
<math>\text {it through the Laplace Transform}\,</math>

<math>\mathcal{L}_s\frac{d^2x}{dt^2}+8\frac{dx}{dt}+16x</math><br /><br />

Revision as of 18:37, 22 October 2009

Using the Laplace Transform to solve a spring mass system that is critically damped

Problem Statement

An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft. The spring is stretched 2 ft and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 3 ft/s. The system contains a damping force of 2 times the initial velocity.

Solution

Things we know