Laplace transforms: Critically Damped Motion: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 112: Line 112:
[[Image:bode.jpg|700px|thumb|left|Fig (1)]];
[[Image:bode.jpg|700px|thumb|left|Fig (1)]];


=Break Points and Asymptotes=
==Break Points and Asymptotes==


<math>\text {A break point is defined by a place in the bode plot where a change occurs.}\,</math>
<math>\text {A break point is defined by a place in the bode plot where a change occurs.}\,</math>
Line 118: Line 118:
<math>\text {To find your break points you must start with a transfer function. }\,</math>
<math>\text {To find your break points you must start with a transfer function. }\,</math>
<math>\text {Transfer function }\,</math>







Revision as of 15:58, 27 October 2009

Using the Laplace Transform to solve a spring mass system that is critically damped

Problem Statement

An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft. The spring is stretched 2 ft and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 3 ft/s. The system contains a damping force of 2 times the initial velocity.

Solution

Things we know


Solving the problem















Apply the Initial and Final Value Theorems to find the initial and final values

Initial Value Theorem
Final Value Theorem


Applying this to our problem




Bode Plot of the transfer function

Transfer Function




Bode Plot

Fig (1)

;

Break Points and Asymptotes





Written By: Mark Bernet


Error Checked By: Greg Peterson