09/29 - Analogy to Vector Spaces: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 8: Line 8:
[[Image:300px-Dot_Product.svg.png|right|thumb|100px|Dot Product]]
[[Image:300px-Dot_Product.svg.png|right|thumb|100px|Dot Product]]
The dot (scalar) product takes two vectors over the real numbers and returns a real-valued scalar quantity. Geometrically, it will show the projection of one vector onto another.
The dot (scalar) product takes two vectors over the real numbers and returns a real-valued scalar quantity. Geometrically, it will show the projection of one vector onto another.

Mathematically the dot product of two vectors <math> \mathbf{a} = {a_1, a_2, ... a_n} \,\!</math> and <math> \mathbf{b} = {b_1, b_2, ... b_n} \,\! </math> is defined as <math>\mathbf{a}\cdot \mathbf{b} = \sum_{i=1}^n a_ib_i = a_1b_1 + a_2b_2 + \cdots + a_nb_n </math>

Since we will be dealing with complex numbers, we need to use the inner product instead of the dot product

Revision as of 14:05, 6 November 2008

Analogy to Vector Spaces

Let the vector be defined as:

    • are the coefficients
    • are the basis vectors
    • A vector basis is a set of n linearly independent vectors capable of generating? an n-dimensional subspace? of

Dot Product & Inner Product

Dot Product

The dot (scalar) product takes two vectors over the real numbers and returns a real-valued scalar quantity. Geometrically, it will show the projection of one vector onto another.

Mathematically the dot product of two vectors and is defined as

Since we will be dealing with complex numbers, we need to use the inner product instead of the dot product