10/10,13,16,17 - Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 121: Line 121:




===The Game (Time Domain)===
===The Game (Time Domain??)===
{| border="1" cellpadding="5" cellspacing="0"
{| border="1" cellpadding="5" cellspacing="0"
|-
|-
Line 136: Line 136:
|
|
|
|
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,dt</math>
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,d\lambda</math>
|Why d lambda instead of dt?
|-
|
|
|<math>e^{j\,2\,\pi f_0\,\lambda}\int_{-\infty}^{\infty} h(\lambda)\cdot e^{-j\,2\,\pi f_0\,\lambda}\,d\lambda</math>
|
|-
|
|
|<math>e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|
|-
|<math> X(f_0)\cdot e^{j\,2\,\pi f_0\,t}</math>
|<math> \Longrightarrow </math>
|<math>X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|Proportionality, Why isn't this a convolution?
|-
|<math> \int_{-\infty}^{\infty}X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=x(t)</math>
|<math> \Longrightarrow </math>
|<math>\int_{-\infty}^{\infty}X(f_0)H(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=F^{-1}\left[X(f)H(f)\right]</math>
|Superposition, Not X(f_0)H(f_0)?
|}
|}

Revision as of 04:05, 24 November 2008

Properties of the Fourier Transform

Linearity

Time Invariance (Delay)

Let and

Frequency Shifting

Double Sideband Modulation

Differentiation in Time

Thus is a linear filter with transfer function

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but not both at the same time
    • Then how can you use the Fourier Transform, but can't build up to it?
Input LTI System Output Reason
Given
Proportionality
Superposition
Time Invariance
Proportionality
Superposition
  • Having trouble seeing
  • Since we were dealing in the frequency domain, is that the reason why multiplying one side did not result in a convolution on the other?


The Game (Time Domain??)

Input LTI System Output Reason
Proportionality
Why d lambda instead of dt?
Proportionality, Why isn't this a convolution?
Superposition, Not X(f_0)H(f_0)?