10/10,13,16,17 - Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 190: Line 190:
===Building up to <math>F\left[u(t)\right]</math>===
===Building up to <math>F\left[u(t)\right]</math>===
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>e^{i \pi}\,\!</math>
|<math>= \cos \pi + i \sin \pi.\,\!</math>
|Euler's Identity
|-
|-
|<math>r_0(t)\,\!</math>
|<math>r_0(t)\,\!</math>
Line 200: Line 204:
|
|
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|
|Euler's Identity: <math>e^{i \pi} = \cos \pi + i \sin \pi.\,\!</math> Why is this not negative in the notes?
|-
|
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (2\pi\,f\,t) - j \sin (2\pi\,f\,t) \right ]\,dt</math>
|<math>\cos(-x) = \cos(x)\,\!</math> & <math>\sin(-x) = -\sin(x)\,\!</math>
|-
|-
|
|
|<math>=j\int_{-\infty}^{\infty}r_0(t)\, \sin (-2\pi\,f\,t)\,dt</math>
|<math>=j\int_{-\infty}^{\infty}r_0(t)\, \sin (-2\pi\,f\,t)\,dt</math>
|<math>r_0(t)\cdot j \sin (-2\pi\,f\,t)</math> = Real odd. Integrates out over symmetric limits.
|Integrating cosine over symmetric limits is 0. Reasoning??
|-
|-
|
|
Line 218: Line 226:
|
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|
|Euler's Identity: <math>e^{i \pi} = \cos \pi + i \sin \pi.\,\!</math> Why is this not negative in the notes?
|-
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (2\pi\,f\,t) - j \sin (2\pi\,f\,t) \right ]\,dt</math>
|<math>\cos(-x) = \cos(x)\,\!</math> & <math>\sin(-x) = -\sin(x)\,\!</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\, \cos(-2\pi\,f\,t)\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_e(t)\, \cos(-2\pi\,f\,t)\,dt</math>
|<math>r_e(t)\cdot \cos (-2\pi\,f\,t)</math> = Real odd. Integrates out over symmetric limits.
|Why??
|-
|-
|
|
|<math>=\,\!</math>Real Even function of <math>f\,\!</math>
|<math>=\,\!</math>Real Even function of <math>f\,\!</math>
|}
|}



===Definitions===
===Definitions===

Revision as of 21:40, 24 November 2008

Properties of the Fourier Transform

Linearity

Time Invariance (Delay)

Let and

Frequency Shifting

Double Sideband Modulation

Differentiation in Time

Thus is a linear filter with transfer function

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but not both at the same time
    • Then how can you use the Fourier Transform, but can't build up to it?
Input LTI System Output Reason
Given
Proportionality
Superposition
Time Invariance
Proportionality
Superposition
  • Having trouble seeing
  • Since we were dealing in the frequency domain, is that the reason why multiplying one side did not result in a convolution on the other?


The Game (Time Domain??)

Input LTI System Output Reason
Proportionality
Why d lambda instead of dt?
Proportionality, Why isn't this a convolution?
Superposition, Not X(f_0)H(f_0)?


Relation to the Fourier Series

Let and reverse the order of summation
Assume that
  • Does the server reset every hour?
  • How can we assume that the answer exists in the real domain?

Remember from 10/02 - Fourier Series that

  • ?
  • Rest of page

Building up to

Euler's Identity
Real odd function of t
&
= Real odd. Integrates out over symmetric limits.
Imaginary Odd function of
Real even function of t
&
= Real odd. Integrates out over symmetric limits.
Real Even function of

Definitions

Can't x(t) have parts that aren't even or odd?