10/10,13,16,17 - Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(16 intermediate revisions by the same user not shown)
Line 27: Line 27:
|
|
|<math>=e^{-j\,2\pi f\,t_0}\,F[x(t)]</math>
|<math>=e^{-j\,2\pi f\,t_0}\,F[x(t)]</math>
|Why isn't this <math>F[x(u)]</math>
|}
|}

===Frequency Shifting===
===Frequency Shifting===
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
Line 78: Line 80:


===The Game (frequency domain)===
===The Game (frequency domain)===
*You can play the game in the frequency or time domain, but not both at the same time
*You can play the game in the frequency or time domain, but it's not advisable to play it in both at same time
**Then how can you use the Fourier Transform, but can't build up to it?
{| border="1" cellpadding="5" cellspacing="0"
{| border="1" cellpadding="5" cellspacing="0"
|-
|-
Line 112: Line 113:
|Proportionality
|Proportionality
|-
|-
|<math> \int_{-\infty}^{\infty}x(\lambda)\cdot 1\cdot e^{j\,2\,\pi f\,\lambda}\,d\lambda=X(F)</math>
|<math> \int_{-\infty}^{\infty}x(\lambda)\cdot 1\cdot e^{j\,2\,\pi f\,\lambda}\,d\lambda=X(f)</math>
|<math> \Longrightarrow </math>
|<math> \Longrightarrow </math>
|<math> \int_{-\infty}^{\infty}x(\lambda)\cdot H(f)\cdot e^{j\,2\,\pi f\,\lambda}\,d\lambda=X(F)\,H(f)</math>
|<math> \int_{-\infty}^{\infty}x(\lambda)\cdot H(f)\cdot e^{j\,2\,\pi f\,\lambda}\,d\lambda=X(f)\,H(f)</math>
|Superposition
|Superposition
|}
|}
*Having trouble seeing <math>F\left[x(t)*h(t)\right]=X(f)\cdot H(f)</math>
*Having trouble seeing <math>F\left[x(t)*h(t)\right]=X(f)\cdot H(f)</math>
*Since we were dealing in the frequency domain, is that the reason why multiplying one side did not result in a convolution on the other?



===The Game (Time Domain??)===
===The Game (Time Domain??)===
Line 137: Line 136:
|
|
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,d\lambda</math>
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,d\lambda</math>
|<math>d\lambda\,\!</math> from [[10/3,6 - The Game]]
|Why d lambda instead of dt?
|-
|-
|
|
Line 152: Line 151:
|<math> \Longrightarrow </math>
|<math> \Longrightarrow </math>
|<math>X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|<math>X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|Proportionality, Why isn't this a convolution?
|Proportionality
|-
|-
|<math> \int_{-\infty}^{\infty}X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=x(t)</math>
|<math> \int_{-\infty}^{\infty}X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=x(t)</math>
|<math> \Longrightarrow </math>
|<math> \Longrightarrow </math>
|<math>\int_{-\infty}^{\infty}X(f_0)H(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=F^{-1}\left[X(f)H(f)\right]</math>
|<math>\int_{-\infty}^{\infty}X(f_0)H(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=F^{-1}\left[X(f)H(f)\right]</math>
|Superposition, Not X(f_0)H(f_0)?
|Superposition
|}
|}



===Relation to the Fourier Series===
===Relation to the Fourier Series===
Line 175: Line 173:
|
|
|<math>=\sum_{n=1}^{\infty}\alpha_{-n} e^{-j\,2\pi n\,t/T}+\alpha_0+\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}</math>
|<math>=\sum_{n=1}^{\infty}\alpha_{-n} e^{-j\,2\pi n\,t/T}+\alpha_0+\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}</math>
|Let <math>n=-m\,\!</math> and reverse the order of summation
| Let <math>n=-m\,\!</math> and reverse the order of summation
|-
|
|
|Note that <math>\alpha_{-n} e^{-j\,2\pi n\,t/T}</math> is the complex conjugate of <math>\alpha_n e^{j\,2\pi n\,t/T}</math>
|-
|-
|
|
|<math>=\alpha_0+2\Re\left[\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}\right]</math>
|<math>=\alpha_0+2\Re\left[\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}\right]</math>
|Assume that <math>x(t) \in \Re</math>
|<math>x(t)+x(t)^*=2 \,\Re \left[x(t)\right]</math>
|-
|
|<math>=\alpha_0+\sum_{n=1}^{\infty}2\Re\left[\left|\alpha_n\right| e^{j\left(\,2\pi n\,t/T+\theta_n\right)}\right]</math>
|-
|
|<math>=\alpha_0+\sum_{n=1}^{\infty}2\left|\alpha_n\right|\cos\left(\frac{2\pi n\,t}{T}+\theta_n\right)</math>
|}
|}
*Does the server reset every hour?
*How can we assume that the answer exists in the real domain?
*How can we assume that the answer exists in the real domain?


===Aside: Polar coordinates===
Remember from [[10/02 - Fourier Series]] that <math> \alpha_n = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\,2\,\pi \,n\,t/T}\, dt</math>
Remember from [[10/02 - Fourier Series]] that <math> \alpha_n = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\,2\,\pi \,n\,t/T}\, dt</math>
*Rectangular coordinates: <math>a+j\,b\!</math>
*<math>\alpha_n=\left| \alpha_n \right|\,e^{j\theta}</math>?
*Polar coordinates: <math>\left| a+j\,b \right|\,e^{j\theta}</math>
*Rest of page
*<math>\theta = tan^{-1} \frac{b}{a}</math>

{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>a+j\,b\,\!</math>
|<math>=\sqrt{a^2+b^2}\left(\cos(\theta)+j\,\sin(\theta)\right)</math>
|-
|
|<math>=\sqrt{a^2+b^2}\left(e^{j\,\theta}\right)</math>
|-
|
|<math>=\sqrt{a^2+b^2}\left(e^{j\,tan^{-1} \left(\frac{b}{a}\right)}\right)</math>
|-
|
|<math>=\left|a+j\,b\right|\,e^{j\,tan^{-1} \left(\frac{b}{a}\right)}</math>
|}


===Building up to <math>F\left[u(t)\right]</math>===
===Building up to <math>F\left[u(t)\right]</math>===
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>e^{i \pi}\,\!</math>
|<math>= \cos \pi + i \sin \pi.\,\!</math>
|Euler's Identity
|-
|-
|<math>r_0(t)\,\!</math>
|<math>r_0(t)\,\!</math>
Line 200: Line 228:
|
|
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|
|Euler's Identity: <math>e^{i \pi} = \cos \pi + i \sin \pi.\,\!</math> Why is this not negative in the notes?
|-
|
|<math>=\int_{-\infty}^{\infty}r_0(t)\,\left[ \cos (2\pi\,f\,t) - j \sin (2\pi\,f\,t) \right ]\,dt</math>
|<math>\cos(-x) = \cos(x)\,\!</math> & <math>\sin(-x) = -\sin(x)\,\!</math>
|-
|-
|
|
|<math>=j\int_{-\infty}^{\infty}r_0(t)\, \sin (-2\pi\,f\,t)\,dt</math>
|<math>=j\int_{-\infty}^{\infty}r_0(t)\, \sin (-2\pi\,f\,t)\,dt</math>
|<math>r_0(t)\cdot j \sin (-2\pi\,f\,t)</math> = Real odd. Integrates out over symmetric limits.
|Integrating cosine over symmetric limits is 0. Reasoning??
|-
|-
|
|
Line 218: Line 250:
|
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (-2\pi\,f\,t) + j \sin (-2\pi\,f\,t) \right ]\,dt</math>
|
|Euler's Identity: <math>e^{i \pi} = \cos \pi + i \sin \pi.\,\!</math> Why is this not negative in the notes?
|-
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\,\left[ \cos (2\pi\,f\,t) - j \sin (2\pi\,f\,t) \right ]\,dt</math>
|<math>\cos(-x) = \cos(x)\,\!</math> & <math>\sin(-x) = -\sin(x)\,\!</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty}r_e(t)\, \cos(-2\pi\,f\,t)\,dt</math>
|<math>=\int_{-\infty}^{\infty}r_e(t)\, \cos(-2\pi\,f\,t)\,dt</math>
|<math>r_e(t)\cdot \cos (-2\pi\,f\,t)</math> = Real odd. Integrates out over symmetric limits.
|Why??
|-
|-
|
|
|<math>=\,\!</math>Real Even function of <math>f\,\!</math>
|<math>=\,\!</math>Real Even function of <math>f\,\!</math>
|}
|}



===Definitions===
===Definitions===
Line 233: Line 268:
|-
|-
|<math>x(t)\,\!</math>
|<math>x(t)\,\!</math>
|<math>=x_e(t)+x_(o)t\,\!</math>
|<math>=x_e(t)+x_o(t)\,\!</math>
|Can't x(t) have parts that aren't even or odd?
|Can't x(t) have parts that aren't even or odd? You can break any function down into a Taylor series. There are even and odd powers in the series.
|-
|-
|<math>x_e(t)\,\!</math>
|<math>x_e(t)\,\!</math>
Line 252: Line 287:
|<math>=\frac{\sgn (t)}{2}</math>
|<math>=\frac{\sgn (t)}{2}</math>
|}
|}



===<math>F\left[u(t)\right]</math>===
===<math>F\left[u(t)\right]</math>===
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>F\left[\frac{1}{2}\right]</math>
|<math>=\int_{-\infty}^{\infty} \frac{1}{2} e^{-j\,2\,\pi\,f\,t}\,dt</math>
|-
|
|<math>=\frac{1}{2} \delta (f)</math>
|-
|<math>F\left[\frac{\sgn (t)}{2}\right]</math>
|<math>=\int_{-\infty}^{\infty} \frac{\sgn (t)}{2} e^{-j\,2\,\pi\,f\,t}\,dt</math>
|-
|
|<math>=\frac{1}{2}\left[\int_{-\infty}^{0} -1\cdot e^{-j\,2\,\pi\,f\,t}\,dt+\int_{0}^{\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt\right]</math>
|-
|
|<math>=\frac{1}{2}\left[\int_{0}^{-\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt+\int_{0}^{\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt\right]</math>
|-
|
|<math>=\underbrace{\frac{1}{2}\int_{0}^{\infty} -e^{j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=-t \\ du=-dt\end{matrix}}+\underbrace{\frac{1}{2}\int_{0}^{\infty} e^{-j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=t \\ du=dt\end{matrix}}</math>
|-
|
|<math>=\int_{0}^{\infty} \frac{-e^{j\,2\,\pi\,f\,u} + e^{-j\,2\,\pi\,f\,u}}{2}\,du</math>
|-
|
|<math>=\int_{0}^{\infty} -j\,\frac{e^{j\,2\,\pi\,f\,u} - e^{-j\,2\,\pi\,f\,u}}{2j}\,du</math>
|-
|
|<math>=\int_{0}^{\infty} -j\,\sin(2\,\pi\,f\,u)\,du</math>
|-
|
|<math>\ne \int_{0}^{\infty} \cos(2\,\pi\,f\,u)\,du</math>
|}

Latest revision as of 16:47, 3 December 2008

Properties of the Fourier Transform

Linearity

Time Invariance (Delay)

Let and
Why isn't this

Frequency Shifting

Double Sideband Modulation

Differentiation in Time

Thus is a linear filter with transfer function

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but it's not advisable to play it in both at same time
Input LTI System Output Reason
Given
Proportionality
Superposition
Time Invariance
Proportionality
Superposition
  • Having trouble seeing

The Game (Time Domain??)

Input LTI System Output Reason
Proportionality
from 10/3,6 - The Game
Proportionality
Superposition

Relation to the Fourier Series

Let and reverse the order of summation
Note that is the complex conjugate of
  • How can we assume that the answer exists in the real domain?

Aside: Polar coordinates

Remember from 10/02 - Fourier Series that

  • Rectangular coordinates:
  • Polar coordinates:

Building up to

Euler's Identity
Real odd function of t
&
= Real odd. Integrates out over symmetric limits.
Imaginary Odd function of
Real even function of t
&
= Real odd. Integrates out over symmetric limits.
Real Even function of

Definitions

Can't x(t) have parts that aren't even or odd? You can break any function down into a Taylor series. There are even and odd powers in the series.