10/10,13,16,17 - Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by the same user not shown)
Line 27: Line 27:
|
|
|<math>=e^{-j\,2\pi f\,t_0}\,F[x(t)]</math>
|<math>=e^{-j\,2\pi f\,t_0}\,F[x(t)]</math>
|Why isn't this <math>F[x(u)]</math>
|}
|}

===Frequency Shifting===
===Frequency Shifting===
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
Line 117: Line 119:
|}
|}
*Having trouble seeing <math>F\left[x(t)*h(t)\right]=X(f)\cdot H(f)</math>
*Having trouble seeing <math>F\left[x(t)*h(t)\right]=X(f)\cdot H(f)</math>
*Since we were dealing in the frequency domain, is that the reason why multiplying one side did not result in a convolution on the other?


===The Game (Time Domain??)===
===The Game (Time Domain??)===
Line 135: Line 136:
|
|
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,d\lambda</math>
|<math>\int_{-\infty}^{\infty} h(\lambda)\cdot e^{j\,2\,\pi f_0\,(t-\lambda)}\,d\lambda</math>
|<math>d\lambda\,\!</math> from [[10/3,6 - The Game]]
|Why d lambda instead of dt?
|-
|-
|
|
Line 150: Line 151:
|<math> \Longrightarrow </math>
|<math> \Longrightarrow </math>
|<math>X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|<math>X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,H(f_0)</math>
|Proportionality, Why isn't this a convolution?
|Proportionality
|-
|-
|<math> \int_{-\infty}^{\infty}X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=x(t)</math>
|<math> \int_{-\infty}^{\infty}X(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=x(t)</math>
|<math> \Longrightarrow </math>
|<math> \Longrightarrow </math>
|<math>\int_{-\infty}^{\infty}X(f_0)H(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=F^{-1}\left[X(f)H(f)\right]</math>
|<math>\int_{-\infty}^{\infty}X(f_0)H(f_0)\cdot e^{j\,2\,\pi f_0\,t}\,d f_0=F^{-1}\left[X(f)H(f)\right]</math>
|Superposition, Not X(f_0)H(f_0)?
|Superposition
|}
|}



===Relation to the Fourier Series===
===Relation to the Fourier Series===
Line 182: Line 182:
|<math>=\alpha_0+2\Re\left[\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}\right]</math>
|<math>=\alpha_0+2\Re\left[\sum_{n=1}^{\infty}\alpha_n e^{j\,2\pi n\,t/T}\right]</math>
|<math>x(t)+x(t)^*=2 \,\Re \left[x(t)\right]</math>
|<math>x(t)+x(t)^*=2 \,\Re \left[x(t)\right]</math>
|-
|
|<math>=\alpha_0+\sum_{n=1}^{\infty}2\Re\left[\left|\alpha_n\right| e^{j\left(\,2\pi n\,t/T+\theta_n\right)}\right]</math>
|-
|
|<math>=\alpha_0+\sum_{n=1}^{\infty}2\left|\alpha_n\right|\cos\left(\frac{2\pi n\,t}{T}+\theta_n\right)</math>
|}
|}
*How can we assume that the answer exists in the real domain? You can break any function down into a Taylor series. There are even and odd powers in the series.
*How can we assume that the answer exists in the real domain?


===Aside: Polar coordinates===
Remember from [[10/02 - Fourier Series]] that <math> \alpha_n = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\,2\,\pi \,n\,t/T}\, dt</math>
Remember from [[10/02 - Fourier Series]] that <math> \alpha_n = \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\,2\,\pi \,n\,t/T}\, dt</math>
*Rectangular coordinates: <math>a+j\,b\!</math>
*<math>\alpha_n=\left| \alpha_n \right|\,e^{j\theta}</math>?
*Polar coordinates: <math>\left| a+j\,b \right|\,e^{j\theta}</math>
*Rest of page
*<math>\theta = tan^{-1} \frac{b}{a}</math>

{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>a+j\,b\,\!</math>
|<math>=\sqrt{a^2+b^2}\left(\cos(\theta)+j\,\sin(\theta)\right)</math>
|-
|
|<math>=\sqrt{a^2+b^2}\left(e^{j\,\theta}\right)</math>
|-
|
|<math>=\sqrt{a^2+b^2}\left(e^{j\,tan^{-1} \left(\frac{b}{a}\right)}\right)</math>
|-
|
|<math>=\left|a+j\,b\right|\,e^{j\,tan^{-1} \left(\frac{b}{a}\right)}</math>
|}


===Building up to <math>F\left[u(t)\right]</math>===
===Building up to <math>F\left[u(t)\right]</math>===
Line 245: Line 268:
|-
|-
|<math>x(t)\,\!</math>
|<math>x(t)\,\!</math>
|<math>=x_e(t)+x_(o)t\,\!</math>
|<math>=x_e(t)+x_o(t)\,\!</math>
|Can't x(t) have parts that aren't even or odd?
|Can't x(t) have parts that aren't even or odd? You can break any function down into a Taylor series. There are even and odd powers in the series.
|-
|-
|<math>x_e(t)\,\!</math>
|<math>x_e(t)\,\!</math>
Line 264: Line 287:
|<math>=\frac{\sgn (t)}{2}</math>
|<math>=\frac{\sgn (t)}{2}</math>
|}
|}



===<math>F\left[u(t)\right]</math>===
===<math>F\left[u(t)\right]</math>===
Line 282: Line 304:
|-
|-
|
|
|<math>=\underbrace{\frac{1}{2}\int_{0}^{-\infty} e^{j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=-t \\ du=-dt\end{matrix}}+\underbrace{\frac{1}{2}\int_{0}^{\infty} e^{-j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=t \\ du=dt\end{matrix}}</math>
|<math>=\frac{1}{2}\left[\int_{0}^{-\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt+\int_{0}^{\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt\right]</math>
|-
|
|<math>=\underbrace{\frac{1}{2}\int_{0}^{\infty} -e^{j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=-t \\ du=-dt\end{matrix}}+\underbrace{\frac{1}{2}\int_{0}^{\infty} e^{-j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=t \\ du=dt\end{matrix}}</math>
|-
|
|<math>=\int_{0}^{\infty} \frac{-e^{j\,2\,\pi\,f\,u} + e^{-j\,2\,\pi\,f\,u}}{2}\,du</math>
|-
|
|<math>=\int_{0}^{\infty} -j\,\frac{e^{j\,2\,\pi\,f\,u} - e^{-j\,2\,\pi\,f\,u}}{2j}\,du</math>
|-
|-
|
|
|<math>=\int_{0}^{-\infty} \frac{e^{j\,2\,\pi\,f\,u} + e^{-j\,2\,\pi\,f\,u}}{2}\,du</math>
|<math>=\int_{0}^{\infty} -j\,\sin(2\,\pi\,f\,u)\,du</math>
|-
|-
|
|
|<math>=\int_{0}^{-\infty} \cos(2\,\pi\,f\,u)\,du</math>
|<math>\ne \int_{0}^{\infty} \cos(2\,\pi\,f\,u)\,du</math>
|}
|}

Latest revision as of 16:47, 3 December 2008

Properties of the Fourier Transform

Linearity

Time Invariance (Delay)

Let and
Why isn't this

Frequency Shifting

Double Sideband Modulation

Differentiation in Time

Thus is a linear filter with transfer function

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but it's not advisable to play it in both at same time
Input LTI System Output Reason
Given
Proportionality
Superposition
Time Invariance
Proportionality
Superposition
  • Having trouble seeing

The Game (Time Domain??)

Input LTI System Output Reason
Proportionality
from 10/3,6 - The Game
Proportionality
Superposition

Relation to the Fourier Series

Let and reverse the order of summation
Note that is the complex conjugate of
  • How can we assume that the answer exists in the real domain?

Aside: Polar coordinates

Remember from 10/02 - Fourier Series that

  • Rectangular coordinates:
  • Polar coordinates:

Building up to

Euler's Identity
Real odd function of t
&
= Real odd. Integrates out over symmetric limits.
Imaginary Odd function of
Real even function of t
&
= Real odd. Integrates out over symmetric limits.
Real Even function of

Definitions

Can't x(t) have parts that aren't even or odd? You can break any function down into a Taylor series. There are even and odd powers in the series.