10/3,6 - The Game: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 35: Line 35:
Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math>
Let <math>x(t) = e^{j2\pi nt/T} = e^{j2\pi \omega_n t}</math>


<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda = -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du=\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right ) e^{j2\pi \omega_nt}</math>
<math>\int_{-\infty}^{\infty} e^{j2\pi \omega_n \lambda} h(t-\lambda)\, d\lambda
= -\int_{\infty}^{-\infty} e^{j2\pi \omega_n (t-u)} h(u)\, du
= \underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math>
*Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math>
*Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math>
*Why did the order of integration switch?
*Why did the order of integration switch?

Revision as of 19:46, 11 November 2008

The Game

The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.

Input LTI System Output Reason
Given
Time Invarience
Proportionality
Superposition

With the derived equation, note that you can put in any to find the given output. Just change your t for a lambda and plug n chug.

Example

Let

  • Let thus
  • Why did the order of integration switch?
  • Explain the rest of the page