ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Jodi Hodge|Back to my Home Page]]
[[Jodi Hodge|Back to my Home Page]]

When T is very large (approaching infinity) the quanity on the left transforms to be approximately the quanity on the right.

<math> \lim_{T\to \infty} </math>




Line 10: Line 14:




Can we make an unperiodic signal and make it periodic by taking the limit?
Using the relations above, can we make an unperiodic signal such as the one given below and make it periodic by taking the limit?


<math> x(t)= \lim_{T\to \infty} \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>
<math> x(t)= \lim_{T\to \infty} \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>
Line 17: Line 21:
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>


Using the Fourier Transform property along with <math> \lim_{T\to \infty} n/t = f </math> then
becomes as the limit is taken n/t becomes f

<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>


Reordering order of integration
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>



<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>


note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>


<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math>
THE GAME

LTI (Linear Time Invariant System)


Using such techniquies as we did above (refered to as The Game in Signals and Systems), similar equations can be manipulated to find its output of Linear Invarient System.
Input LTI Output Reason




THE GAME
LTI (Linear Time Invariant System)
Input LTI Output Reason


<math> x(t)\longrightarrow \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> Superposition


<math> X(f)\longrightarrow \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df' \!</math> Superposition
<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>

Latest revision as of 22:34, 17 December 2009

Back to my Home Page

When T is very large (approaching infinity) the quanity on the left transforms to be approximately the quanity on the right.



Using the relations above, can we make an unperiodic signal such as the one given below and make it periodic by taking the limit?

note that

Using the Fourier Transform property along with then

Reordering order of integration

note that the defination of the delta function is

Using such techniquies as we did above (refered to as The Game in Signals and Systems), similar equations can be manipulated to find its output of Linear Invarient System.


                     THE GAME
            LTI (Linear Time Invariant System) 
Input     LTI                             Output                                  Reason

Superposition

Superposition