ASN4 - Fourier Transform property: Parseval's Theorem: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 4: Line 4:
<math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> in time transforms to <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math> in frequency
<math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> in time transforms to <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math> in frequency


First find the magnitude of <math>s(t)</math> which is also the Inverse Fourier Transform of <math>S(f)</math>.
The magnitude of <math>s(t)</math> is also the Inverse Fourier Transform of <math>S(f)</math>.


<math> |s(t)|= F ^{-1}[S(f)]=|\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df | </math>
<math> |s(t)|= F ^{-1}[S(f)]=|\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df | </math>
Line 11: Line 11:


So then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df</math>
So then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df</math>

<math>Insert formula here</math>

Revision as of 02:02, 30 November 2009

Parseval's Theorem

in time transforms to in frequency

The magnitude of is also the Inverse Fourier Transform of .

Note that

So then