ASN4 - Fourier Transform property: Parseval's Theorem: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 10: Line 10:
Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>
Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>


So then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df</math>
So then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>


Squareing the function and intergrating in the time main <math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> is to do the same in the frequency domain <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math>
<math>Insert formula here</math>

Revision as of 02:09, 30 November 2009

Parseval's Theorem

in time transforms to in frequency

The magnitude of is also the Inverse Fourier Transform of .

Note that

So then

Squareing the function and intergrating in the time main is to do the same in the frequency domain