ASN6 a,b- Prove given Fourier Transform property: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 2: Line 2:




Problem Statement
'''Problem Statement'''


6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. HINT: <math> S(0) = S(f) \vert _{_{f=0}} = \int_{- \infty}^{\infty} s(t)e^{-j2 \pi (f \rightarrow 0)t} \,dt = \int_{- \infty}^{\infty} s(t) \,dt </math>
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(f_0) = 0 </math>.


6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?
6(b) If <math> S(f_0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(f_0) </math>?


'''Answer'''
Solution


a)Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math>
<math>
\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
</math>


Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math>


and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>
And


The problem statement says to make <math>S(f_0)=0 \!</math> that makes the above equation simplify to
<math>
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt
</math>


<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>
And


Taking the inverse Fourier Transform and changing the order of intgration
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt = </math>


<math> \int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df \! </math>
And
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } \,dt \right]
</math>


Then
Result


<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[ \frac{S(f)}{j2 \pi f} \right] \! </math>
<math>

\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(f-f_{0})e^{-j2 \pi (f-f_{0})t_{0}}
Therefore it is demonstrated that <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>
</math>


b) If <math>S(f_0)\neq 0</math>

Then

<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda\,d\lambda \! </math>

<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{\infty} e^{j2 \pi f t}S (f)\,d\lambda\,d\lambda - \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} S(f_0) \,d\lambda\,d\lambda \! </math>

<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{\infty}\frac{ e^{j2 \pi f t}} {j2 \pi f } S (f)\,d\lambda - \int_{- \infty}^{\infty}\frac{ e^{j2 \pi f t}} {j2 \pi f } S (f_0)\,d\lambda \! </math>

Using <math> dt=d\lambda \!</math> and taking the Fourier transform of the equation

answer is <math>\mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{ e^{j2 \pi f t}} {j2 \pi f }S(f) - \frac{ e^{j2 \pi f t}} {j2 \pi f }S(f_0) \! </math>

Latest revision as of 13:21, 19 December 2009

Back to my home page


Problem Statement

6(a) Show .

6(b) If can you find in terms of ?

Answer

a)Remember that dummy variable was used in substitution such that

Then

and

The problem statement says to make that makes the above equation simplify to

Taking the inverse Fourier Transform and changing the order of intgration

Then

Therefore it is demonstrated that


b) If

Then

Using and taking the Fourier transform of the equation

answer is