ASN6 a,b- Prove given Fourier Transform property: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 35: Line 35:
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda\,d\lambda \! </math>
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda\,d\lambda \! </math>


<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t} e^{j2 \pi f t}S(f)\,d\lambda - \int_{- \infty}^{\infty} e^{j2 \pi f t}S(f_0) \,d\lambda \! </math>
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t}S (f)\,d\lambda\,d\lambda - \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} S(f_0) \,d\lambda\,d\lambda \! </math>


<math> dt=d\lambda</math> and taking the Fourier transform of the equation
<math> dt=d\lambda</math> and taking the Fourier transform of the equation

Revision as of 22:23, 18 December 2009

Back to my home page


Problem Statement

6(a) Show .

6(b) If can you find in terms of ?

Answer

a)Remember that dummy variable was used in substitution such that

Then

and

The problem statement says to make that makes the above equation simplify to

Taking the inverse Fourier Transform and changing the order of intgration

Then

Therefore it is demonstrated that


b) If

Then

and taking the Fourier transform of the equation

answer is