Coupled Horizontal Spring Mass Oscillator: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: =Coupled Oscillator Spring Mass Oscillator: State Space = ==Problem Statement== Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring...)
 
 
(15 intermediate revisions by one other user not shown)
Line 11: Line 11:
===Things we know===
===Things we know===


<math>m_1 = 4 kg \frac{}{}</math>
<math>m_1 = 5 kg \frac{}{}</math>


<math>m_2 = 4 kg \frac{}{}</math>
<math>m_2 = 5 kg \frac{}{}</math>


<math>k_1 = 50 Nm \frac{}{}</math>
<math>k_1 = 50 Nm \frac{}{}</math>
Line 20: Line 20:


<math>k_3 = 50 Nm \frac{}{}</math>
<math>k_3 = 50 Nm \frac{}{}</math>

<math>\text {So now that we have are problem we need to start setting up the equations we need to solve it.}\,</math>

<math>\dot{x_1}=\dot{x_1}</math>

<math>\ddot{x_1}+\frac{k_1+k_2}{m_1}{x_1}-\frac{k_2}{m_1}{x_2}=0</math>

<math>\dot{x_2}=\dot{x_2}</math>

<math>\ddot{x_2}+\frac{k_3+k_2}{m_2}{x_2}-\frac{k_2}{m_2}{x_1}=0</math>

<math>\text {Now we take these equations and put them in a state space model.}\,</math>

<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,
</math>
=
<math>\begin{bmatrix}0&1&0&0 \\\frac{(k_1+k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\0&0&0&1 \\\frac{-k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0
\end{bmatrix}

\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>

<math>\text {Now we make the appropriate numerical substitutions.}\,</math>


<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,
</math>
=
<math>\begin{bmatrix}0&1&0&0 \\\frac{150}{5}&0&\frac{-50}{5}&0 \\0&0&0&1 \\\frac{-50}{5}&0&\frac{150}{5}&0 \end{bmatrix}

\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>




<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,

=


\begin{bmatrix}0&1&0&0 \\30&0&-10&0 \\0&0&0&1 \\-10&0&30&0\end{bmatrix}


\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>

<math>\text {So using Maple I was able to obtain the eigenvalues and eigenvectors.}\,</math>

<math>\text {Eigenvalues.}\,</math>


<math>\lambda_1=2\sqrt{10}\,</math>
<math>\lambda_2=-2\sqrt{10}\,</math>
<math>\lambda_3=2\sqrt{5}\,</math>
<math>\lambda_4=-2\sqrt{5}\,</math>

<math>\text {Eigenvectors.}\,</math>

<math>\ {K_1=}\,</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,
</math>,<math>\ {K_2=}\,</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,
</math>,<math>\ {K_3=}\,</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,
</math>,<math>\ {K_4=}\,</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,
</math>

<math>\text {So then the answer is...}\,</math>

<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math>

==Solve with the Matrix exponential==


<math>\text {So first we need to know what the matrix exponential equation looks like.}\,</math>

<math>\text {it is...}\,</math>



<math>\tilde{x}=e^{\tilde{A}t}\tilde{x(0)}\,</math>

<math>\text {Where A is a matrix}\,</math>

<math>\text {Also }\,</math>

<math>\tilde{z}=\tilde{T}\tilde{x}\,</math>

<math>\tilde{x}=\tilde{T}^{-1}\tilde{z}\,</math>

<math>\text {Where }\,</math>

<math>\tilde{T}^{-1}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\,
</math>

<math>\text {I converted the T matrix to decimal form for make it easier to write up on here }\,</math>



<math>\tilde{T}=\,</math></math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\,
</math>

<math>\text {and}\,</math>

<math>\hat{A}=\,</math><math>\begin{bmatrix}e^{\lambda_1t}&0&0&0 \\0&e^{\lambda_2t}&0&0 \\0&0&e^{\lambda_3t}&0 \\0&0&0&e^{\lambda_4t}\end{bmatrix}\,
</math>


<math>e^{\hat{A}t}=\,</math><math>\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}\,
</math>


<math>\text {Then the next step is}\,</math>

<math>\tilde{z}=e^{\hat{A}t}\tilde{z}(0)\,</math>

<math>\text {So that implies}\,</math>

<math>\tilde{x}=\tilde{T}^{-1}e^{\hat{A}t}\tilde{z}(0)\,</math><math>=\tilde{T}^{-1}e^{\hat{A}t}\tilde{T}^{-1}\tilde{x}(0)\,</math>


<math>\text {Now Simply substitute back in and we have the answer. }\,</math>


<math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math>


----
Created By: Mark Bernet

Latest revision as of 20:32, 9 December 2009

Coupled Oscillator Spring Mass Oscillator: State Space

Problem Statement

Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.


Solution

Things we know

=


=




,,,

Solve with the Matrix exponential



</math>







Created By: Mark Bernet