Coupled Oscillator: Coupled Mass-Spring System with Input: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 18: Line 18:


<math>k_2 = 80000 \frac{N}{m}</math>
<math>k_2 = 80000 \frac{N}{m}</math>


Let the initial conditions be zero for the time being.




==Force Equations==
==Force Equations==


[[Image:BP_FBD2-2.jpg|right|FBD for m2]]
[[Image:BP_FBD2-2.jpg|right|FBD for m1]]


[[Image:BP_FBD1-2.jpg|right|FBD for m1]]
[[Image:BP_FBD1-2.jpg|right|FBD for m1]]
Line 43: Line 40:
Since
Since
<math>
<math>
F_{s_2} = k_2(L_2+x_1-x_2)
F_s = -k \, x
</math>
</math>


<math>
<math>
\Rightarrow\ \ddot{x}_2=\frac{-k_2}{m_2} \, x_2 - g
\Rightarrow\ \ddot{x}_2=-g + \frac{k_2}{m_2} \, L_2 + \frac{k_2}{m_2} \, x_1 - \frac{k_2}{m_2} \, x_2
</math>
</math>


Line 58: Line 55:
<math>
<math>
\Rightarrow\ m_1 \ddot{x}_1=F_{s_1} + F - m_1 g - F_{s_2}
\Rightarrow\ m_1 \ddot{x}_1=F_{s_1} + F - m_1 g - F_{s_2}
</math>

Since
<math>
F_{s_1} = k_1(L_1-x_1)
</math>
</math>


Line 64: Line 66:


<math>
<math>
\Rightarrow\ \ddot{x}_1 = \frac{-k_1}{m_1} \, x_1 + \frac{k_2}{m_1} \, x_2 - g + \frac{F}{m_1}
\Rightarrow\ \ddot{x}_1 = - g +\frac{1}{m_1} \, F + \frac{k_1}{m_1} \, L_1 - \frac{k_1}{m_1} \, x_1
-\frac{k_2}{m_1} \, L_2 - \frac{k_2}{m_1} \, x_1 + \frac{k_2}{m_1} \, x_2
</math>
</math>



==State Space Equation==
==State Space Equation==
Line 79: Line 83:


<math>
<math>
\begin{bmatrix}
& & & \\
& & & \\
& & & \\
& & &
\end{bmatrix}


\begin{bmatrix}
\begin{bmatrix}
Line 99: Line 97:


\begin{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{-k_1}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\
\frac{-k_1}{m_1}-\frac{k_2}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{-k_2}{m_2} & 0
\frac{k_2}{m_2} & 0 & \frac{-k_2}{m_2} & 0
\end{bmatrix}
\end{bmatrix}


Line 110: Line 108:
x_2 \\
x_2 \\
\dot{x}_2
\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}
0 & 0 & 0 & 0 \\
-1 & \frac{k_1}{m_1} & \frac{-k_2}{m_1} & \frac{1}{m_1} \\
0 & 0 & 0 & 0 \\
-1 & 0 & \frac{k_2}{m_2} & 0
\end{bmatrix}

\begin{bmatrix}
g \\
L_1 \\
L_2 \\
F
\end{bmatrix}
\end{bmatrix}


</math>
</math>



=Solve Using Laplace Transform Method=
=Solve Using Laplace Transform Method=

Latest revision as of 16:25, 13 December 2009

Setup State Space Equation

Problem Statement

Find an input function such that the lower mass, , is stationary in the steady state. Find the equation of motion for the upper mass, .

The use of one spring between the masses is just a simplification of a multi-spring system, so the possibility of being off-kilter is neglected and just the vertical forces are considered.

Problem Setup


Initial Conditions and Values


Force Equations

FBD for m1
FBD for m1

Sum of the forces in the x direction yields

For

Since

And for

Since

Where is the input force


State Space Equation

The general form of the state equation is

Where denotes a matrix and denotes a vector.

Let , , , and be the state variables, then


Solve Using Laplace Transform Method