Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Problem Statement===
===Problem Statement===



'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.'''
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential'''


[[Image:Coupled_Oscillator.jpg]]
[[Image:Coupled_Oscillator.jpg]]
Line 15: Line 16:


:<math>k3=100 N/m\,</math>
:<math>k3=100 N/m\,</math>
'''F=ma'''
:<math>\ddot{x_1}=\frac{x_1(k_1-k_2)}{m_1}-\frac{x_2*k_1}{m_1}\,</math>

:<math>\ddot{x_2}=\frac{x_2(k_1+k_2)}{m_2}-\frac{x_1*k_1}{m_2}\,</math>


'''State Equations'''
'''State Equations'''
Line 121: Line 126:
'''Eigenvalues'''
'''Eigenvalues'''


<math>\lambda_1=-5.29412\,</math>
:<math>\lambda_1=-5.29412\,</math>


<math>\lambda_2=2.83333i\,</math>
:<math>\lambda_2=2.83333i\,</math>


<math>\lambda_3= -2.83333i\,</math>
:<math>\lambda_3= -2.83333i\,</math>


<math>\lambda_4=0\,</math>
:<math>\lambda_4=0\,</math>




Line 163: Line 168:
\end{bmatrix}</math>
\end{bmatrix}</math>


'''Standard Equation'''

:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>

:<math>\ x=c_1</math><math>\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}\,</math><math>e^{-5.29412}+ c_2\,</math><math>
\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}\,</math><math>e^{2.83333i}+ c_3\,</math><math>\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}\,</math><math>e^{-2.83333i}+ c_4\,</math><math>\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix}\,
</math><math>e^{0}\,</math>


'''Eigenmodes'''
'''Eigenmodes'''
Line 174: Line 206:




'''Matrix Exponential using transformation z=Tx'''


<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
'''Solve Using the Matrix Exponential'''

<math>z=Tx\,</math>


<math>\dot{z}=TAT^{-1}z \,</math>



<math>\dot{z}=\,</math>
<math>\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,
</math>
<math>z\,</math>



<math>B=TAT^{-1}=\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,</math>



<math>z=e^{Bt}z(0)\,</math>


<math>e^{Bt}=\begin{bmatrix}
e^{-5.2941t}&0&0&0 \\
0&e^{2.833it}&0&0 \\
0&0&e^{-2.83333it}&0 \\
0&0&0&e^{5.2941t}
\end{bmatrix}\,</math>

<math>x=T^{-1}z\,</math>

<math>x=T^{-1}e^{Bt}Tx(0)\,</math>

<math>e^{Pt}=T^{-1}e^{Bt}T\,</math>

<math>e^{Pt}=\,</math>lots of variables

'''Another way to solve using the Matrix exponential'''




Line 195: Line 276:




<math>[SI-A]^{-1} = \,</math>
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out)



<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>


<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>(something too large for my calculator to display or that I want to type out)


Written by: Andrew Hellie
Written by: Andrew Hellie

Latest revision as of 23:28, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential

 Coupled Oscillator.jpg

Initial Conditions:

F=ma

State Equations

=

With the numbers...


=


=


Eigenvalues


Eigenvectors




Standard Equation

Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference


Matrix Exponential using transformation z=Tx






lots of variables

Another way to solve using the Matrix exponential



=


(something too large for my calculator to display or that I want to type out)


(something too large for my calculator to display or that I want to type out)

Written by: Andrew Hellie