Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 12: Line 12:
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>


:<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>
<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>




Line 24: Line 24:
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>


:<math>\Rightarrow</math> <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math>
<math>\Rightarrow</math> <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math>




Line 30: Line 30:
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math>
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math>


:<math>\Rightarrow</math> <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math>
<math>\Rightarrow</math> <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math>


:<math>\Rightarrow</math> <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math>
<math>\Rightarrow</math> <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math>

Revision as of 14:18, 23 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle . Find it's location at t = 3s.

Solution

Assuming no damping and a small angle(), the equation for the motion of a simple pendulum can be written as


Substituting values we get


Remember the identities


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with


Since we know that and the initial velocity we get