Golden Rules: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Golden Rules==
=Golden Rules=
When analyzing operational amplifiers, there are a few rules that need to be taken into consideration in order to solve circuits using KVL or KCL.
When analyzing operational amplifiers, there are a few rules that need to be taken into consideration in order to solve circuits using KVL or KCL.
# Because the output voltage does not dpened on the output current, the output impedance equals zero.
# Because the output voltage does not dpened on the output current, the output impedance equals zero.
Line 10: Line 10:
*[http://hyperphysics.phy-astr.gsu.edu/HBASE/electronic/opampi.html Ideal Op-amp]
*[http://hyperphysics.phy-astr.gsu.edu/HBASE/electronic/opampi.html Ideal Op-amp]
*[http://mechatronics.mech.northwestern.edu/design_ref/electrical_design/opamps.html Operational Amplifiers]
*[http://mechatronics.mech.northwestern.edu/design_ref/electrical_design/opamps.html Operational Amplifiers]

==Reviewer==

Revision as of 19:44, 12 January 2010

Golden Rules

When analyzing operational amplifiers, there are a few rules that need to be taken into consideration in order to solve circuits using KVL or KCL.

  1. Because the output voltage does not dpened on the output current, the output impedance equals zero.
  2. The input impedance .
  3. When there is a negative feedback, both inputs have the same voltage. In other words, is equal to .
  4. When solving circuits using the nodes method, write node equations at and , but not at .

Sources

Reviewer