HW: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
No edit summary
Line 1: Line 1:
*[[Signals and systems|Signals and Systems]]
asdfasdfasdfasdf
==An Introduction to the Fourier Transform==

A Fourier Transform is a representation of a function using a large number of sinusoids added together to create it.

For example, a square wave could be represented by:
<math>x_{\mathrm{square}}(t) = \frac{4}{\pi} \sum_{k=1}^\infty {\sin{\left ((2k-1)2\pi ft \right )}\over(2k-1)} </math>

X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt

</math>
<br>
<br>
Suppose that we have some function, say <math> \beta (t) </math>, that is nonperiodic and finite in duration.<br>
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math>
<br><br>
Now let's make a periodic function
<math>
\gamma(t)
</math>
by repeating
<math>
\beta(t)
</math>
with a fundamental period
<math>
T_\zeta
</math>.
Note that
<math>
\lim_{T_\zeta \to \infty}\gamma(t)=\beta(t)
</math>
<br>
The Fourier Series representation of <math> \gamma(t) </math> is
<br>
<math>
\gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt}
</math>
where
<math>
f={1\over T_\zeta}
</math>
<br>and
<math>
\alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt
</math>
<br>
<math> \alpha_k </math> can now be rewritten as
<math>
\alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt
</math>
<br>From our initial identity then, we can write <math> \alpha_k </math> as
<math>
\alpha_k={1\over T_\zeta}\Beta(kf)
</math>
<br> and
<math>
\gamma(t)
</math>
becomes
<math>
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt}
</math>
<br>
Now remember that
<math>
\beta(t)=\lim_{T_\zeta \to \infty}\gamma(t)
</math>
and
<math>
{1\over {T_\zeta}} = f.
</math>
<br>
Which means that
<math>
\beta(t)=\lim_{f \to 0}\gamma(t)=\lim_{f \to 0}\sum_{k=-\infty}^\infty f \Beta(kf) e^{j2\pi fkt}
</math>
<br>
Which is just to say that
<math>
\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df
</math>
<br>
<br>
So we have that
<math>
\mathcal{F}[\beta(t)]=\Beta(f)=\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi ft}\, dt
</math>
<br>
Further
<math>
\mathcal{F}^{-1}[\Beta(f)]=\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df
</math>
==Some Useful Fourier Transform Pairs==
<math>
\mathcal{F}[\alpha(t)]=\frac{1}{\mid \alpha \mid}f(\frac{\omega}{\alpha})
</math>
<br>
{|
|-
|<math>\mathcal{F}[c_1\alpha(t)+c_2\beta(t)]</math>
|<math>=\int_{-\infty}^{\infty} (c_1\alpha(t)+c_2\beta(t)) e^{-j2\pi ft}\, dt</math>
|-
|
|<math>=\int_{-\infty}^{\infty}c_1\alpha(t)e^{-j2\pi ft}\, dt+\int_{-\infty}^{\infty}c_2\beta(t)e^{-j2\pi ft}\, dt</math>
|-
|
|<math>=c_1\int_{-\infty}^{\infty}\alpha(t)e^{-j2\pi ft}\, dt+c_2\int_{-\infty}^{\infty}\beta(t)e^{-j2\pi ft}\, dt=c_1\Alpha(f)+c_2\Beta(f)</math>
|-
|}
<br>
<math>
\mathcal{F}[\alpha(t-\gamma)]=e^{-j2\pi f\gamma}\Alpha(f)
</math>
<br>
<math>
\mathcal{F}[\alpha(t)*\beta(t)]=\Alpha(f)\Beta(f)
</math>
<br>
<math>
\mathcal{F}[\alpha(t)\beta(t)]=\Alpha(f)*\Beta(f)
</math>
<br>
Some other usefull pairs can be found here: [[Fourier Transforms]]

==A Second Approach to Fourier Transforms==
*[[Fourier Transforms]]

Revision as of 18:48, 8 October 2007

An Introduction to the Fourier Transform

A Fourier Transform is a representation of a function using a large number of sinusoids added together to create it.

For example, a square wave could be represented by:

X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt

</math>

Suppose that we have some function, say , that is nonperiodic and finite in duration.
This means that for some

Now let's make a periodic function by repeating with a fundamental period . Note that
The Fourier Series representation of is
where
and
can now be rewritten as
From our initial identity then, we can write as
and becomes
Now remember that and
Which means that
Which is just to say that

So we have that
Further

Some Useful Fourier Transform Pairs






Some other usefull pairs can be found here: Fourier Transforms

A Second Approach to Fourier Transforms