Homework Three: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 58: Line 58:
<math>
<math>


\,x(f) = \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt'
\,X(f) = \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt'


</math>
</math>
Line 66: Line 66:
<table>
<table>
<tr>
<tr>
<td width=100><math>\,x(f) = \int_{-\infty}^{\infty} \,x(t) e^{-j2 \pi ft} \,dt</math></td>
<td width=100><math>\,X(f) = \int_{-\infty}^{\infty} \,x(t) e^{-j2 \pi ft} \,dt</math></td>
<td width=100 align="center"><math>\equiv</math></td>
<td width=100 align="center"><math>\equiv</math></td>
<td width=100><math>\langle x(t) | e^{j2 \pi tf} \rangle </math></td>
<td width=100><math>\langle x(t) | e^{j2 \pi tf} \rangle </math></td>
Line 73: Line 73:


<tr>
<tr>
<td><math>\,x(t) = \int_{-\infty}^{\infty} \,x(f) e^{-j2 \pi ft} \,df</math></td>
<td><math>\,x(t) = \int_{-\infty}^{\infty} \,X(f) e^{-j2 \pi ft} \,df</math></td>
<td align="center"><math>\equiv</math></td>
<td align="center"><math>\equiv</math></td>
<td><math>\langle x(f) | e^{j2 \pi tf} \rangle </math></td>
<td><math>\langle X(f) | e^{j2 \pi tf} \rangle </math></td>
<td><math>\,x(f) \mbox{ projected onto } e^{j2 \pi tf}</math></td>
<td><math>\,x(f) \mbox{ projected onto } e^{j2 \pi tf}</math></td>
</tr>
</tr>
Line 81: Line 81:
</table>
</table>


<math>$\laplace$</math>


----
----

Revision as of 18:26, 14 October 2009

October 5th, 2009, class notes (as interpreted by Nick Christman)


The topic covered in class on October 5th was about how to deal with signals that are not periodic.

Given the following Fourier series, what if the signal is not periodic?

where

To investigate this potential disaster, let's look at what happens as the period increases (i.e. not periodic). Essentially, as we can say the following:

With this, we get the following:

Given the above equivalence, we say the following:

Therefore, we have obtained an equation to relate the Fourier analysis of a function in the time-domain to the frequency-domain:

Failed to parse (unknown function "\laplace"): {\displaystyle $\laplace$}


Back