Laplace Transforms: Vertical Motion of a Coupled Spring System: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
<math>X_1(s)=\dfrac{m_1(sx_1(0)+\dot{x}_1(0))+k_2X_2(s)}{(m_1s^2+k_1+k_2)}</math>
<math>X_1(s)=\dfrac{m_1(sx_1(0)+\dot{x}_1(0))+k_2X_2(s)}{(m_1s^2+k_1+k_2)}</math>
<math>X_1(s)=\dfrac{1(s0+(-1)]+1X_2(s)}{(1s^2+1+1)}</math>
<math>X_1(s)=\dfrac{X_2(s)-1}{(s^2+2)}</math>
<math>X_1(s)=\dfrac{X_2(s)-1}{(s^2+2)}</math>
Line 37: Line 39:
<math>X_2(s)=\dfrac{m_2(sx_2(0)+\dot{x}_2(0))+k_2X_1(s)}{(m_2s^2+k_2+k_3)}</math>
<math>X_2(s)=\dfrac{m_2(sx_2(0)+\dot{x}_2(0))+k_2X_1(s)}{(m_2s^2+k_2+k_3)}</math>
<math>X_2(s)=\dfrac{1(s0+1)+1X_1(s)}{(1s^2+1+1)}</math>
<math>X_2(s)=\dfrac{X_1(s)+1}{(s^2+2)}</math>
<math>X_2(s)=\dfrac{X_1(s)+1}{(s^2+2)}</math>

Revision as of 14:57, 23 November 2009

Problem Statement

Figure 1. Coupled Spring System.

Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when , , and , , , and .

Solution

At positions and , the masses and are in equilibrium. Thus, the motion equations for and are,




where and represent the Newton's Second Law of Motion and and represent the net forces acting in the masses.

Laplace Transform

Applying the Laplace Transform to the motion equations and plugging the values of , , , , , , , , and for this systems, we obtain,




 




















Finally, solving for and yields,




Inverse Laplace Transform

First, we recognize that

On the other hand, we identify that , and so . Hence, we fix the expression by multiplying and dividing by ,