Laplace Transforms: Vertical Motion of a Coupled Spring System: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
__TOC__
__TOC__


[[Image:Figure1.gif|thumb|Figure 1. Coupled Spring System.]]
= Problem Statement =
= Problem Statement =
[[Image:Figure1.gif|thumb|Figure 1. Coupled Spring System.]]Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when <math>k_1=k_2=k_3=1</math>, <math>m_1=m_2=1</math>, and <math>x_1(0)=0</math>, <math>x'1(0)=-1</math>, <math>x_2(0)=0</math>, and <math>x'_2(0)=1</math>.
Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when <math>k_1=k_2=k_3=1</math>, <math>m_1=m_2=1</math>, and <math>x_1(0)=0</math>, <math>x'1(0)=-1</math>, <math>x_2(0)=0</math>, and <math>x'_2(0)=1</math>.


= Solution =
= Solution =
At positions <math>x_1</math> and <math>x_2</math>, the masses <math>m_1</math> and <math>m_2</math> are in equilibrium. Thus, the motion equations for <math>m_1</math> and <math>m_2</math> are,
At positions <math>x_1</math> and <math>x_2</math>, the masses <math>m_1</math> and <math>m_2</math> are in equilibrium. Thus, the motion equations for <math>m_1</math> and <math>m_2</math> are,


<math>m_1\ddot{x}_1=-k_1x_1+k_2(x_2-x_1)</math>
:<math>m_1\ddot{x}_1=-k_1x_1+k_2(x_2-x_1)</math>
&there4; <math>m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)=0</math>
:&there4;<math>m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)=0</math>


<math>m_2\ddot{x}_2=-k_2(x_2-x_1)-k_3x_2</math>
:<math>m_2\ddot{x}_2=-k_2(x_2-x_1)-k_3x_2</math>
&there4; <math>m_2\ddot{x}_2+k_2(x_2-x_1)-k_3x_2=0</math>
:&there4; <math>m_2\ddot{x}_2+k_2(x_2-x_1)-k_3x_2=0</math>




Line 19: Line 20:
Applying the Laplace Transform to the motion equations and plugging the values of <math>k_1</math>, <math>k_2</math>, <math>k_3</math>, <math>m_1</math>, <math>m_2</math>, <math>x_1(0)</math>, <math>x'1(0)</math>, <math>x_2(0)</math>, and <math>x'_2(0)</math> for this systems, we obtain,
Applying the Laplace Transform to the motion equations and plugging the values of <math>k_1</math>, <math>k_2</math>, <math>k_3</math>, <math>m_1</math>, <math>m_2</math>, <math>x_1(0)</math>, <math>x'1(0)</math>, <math>x_2(0)</math>, and <math>x'_2(0)</math> for this systems, we obtain,


<math>\mathcal{L}[m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)]=0</math>
:<math>\mathcal{L}[m_1\ddot{x}_1+k_1x_1-k_2(x_2-x_1)]=0</math>
::<math>m_1[s^2X_1(s)-sx_1(0)-\dot{x}_1(0)]+k_1X_1(s)-k_2(X_2(s)-X_1(s))=0</math>
::<math>X_1(s)(m_1s^2+k_1+k_2)=m_1(sx_1(0)-\dot{x}_1(0))+k_2X_2(s)</math>
::<math>X_1(s)=\dfrac{m_1(sx_1(0)+\dot{x}_1(0))+k_2X_2(s)}{(m_1s^2+k_1+k_2)}</math>
::<math>X_1(s)=\dfrac{1(s0+(-1)]+1X_2(s)}{(1s^2+1+1)}</math>
::<math>X_1(s)=\dfrac{X_2(s)-1}{(s^2+2)}</math>
<math>m_1[s^2X_1(s)-sx_1(0)-\dot{x}_1(0)]+k_1X_1(s)-k_2(X_2(s)-X_1(s))=0</math>
:<math>\mathcal{L}[m_2\ddot{x}_2+k_2(x_2-x_1)+k_3x_2]=0</math>
::<math>m_2[s^2X_2(s)-sx_2(0)-\dot{x}_2(0)]+k_2(X_2(s)-X_1(s))+k_3X_2(s)=0</math>
<math>X_1(s)(m_1s^2+k_1+k_2)=m_1(sx_1(0)-\dot{x}_1(0))+k_2X_2(s)</math>
::<math>X_2(s)(m_2s^2+k_2+k_3)=m_2(sx_2(0)-\dot{x}_2(0))+k_2X_1(s)</math>
::<math>X_2(s)=\dfrac{m_2(sx_2(0)+\dot{x}_2(0))+k_2X_1(s)}{(m_2s^2+k_2+k_3)}</math>
<math>X_1(s)=\dfrac{m_1(sx_1(0)+\dot{x}_1(0))+k_2X_2(s)}{(m_1s^2+k_1+k_2)}</math>
::<math>X_2(s)=\dfrac{1(s0+1)+1X_1(s)}{(1s^2+1+1)}</math>
::<math>X_2(s)=\dfrac{X_1(s)+1}{(s^2+2)}</math>
<math>X_1(s)=\dfrac{1(s0+(-1)]+1X_2(s)}{(1s^2+1+1)}</math>
<math>X_1(s)=\dfrac{X_2(s)-1}{(s^2+2)}</math>
<math>\mathcal{L}[m_2\ddot{x}_2+k_2(x_2-x_1)+k_3x_2]=0</math>
<math>m_2[s^2X_2(s)-sx_2(0)-\dot{x}_2(0)]+k_2(X_2(s)-X_1(s))+k_3X_2(s)=0</math>
<math>X_2(s)(m_2s^2+k_2+k_3)=m_2(sx_2(0)-\dot{x}_2(0))+k_2X_1(s)</math>
<math>X_2(s)=\dfrac{m_2(sx_2(0)+\dot{x}_2(0))+k_2X_1(s)}{(m_2s^2+k_2+k_3)}</math>
<math>X_2(s)=\dfrac{1(s0+1)+1X_1(s)}{(1s^2+1+1)}</math>
<math>X_2(s)=\dfrac{X_1(s)+1}{(s^2+2)}</math>


Finally, solving for <math>X_1(s)</math> and <math>X_2(s)</math> yields,
Finally, solving for <math>X_1(s)</math> and <math>X_2(s)</math> yields,


<math>X_1(s)=\dfrac{-1}{s^2+3}</math>
:<math>X_1(s)=\dfrac{-1}{s^2+3}</math>
:<math>X_2(s)=\dfrac{1}{s^2+3}</math>

<math>X_2(s)=\dfrac{1}{s^2+3}</math>


== Inverse Laplace Transform ==
== Inverse Laplace Transform ==
[[Image:mass_spring_displacement_plot.png|thumb|Figure 2. Coupled Spring System Displacement.]]

First, we recognize that
First, we recognize that


Line 58: Line 48:
On the other hand, we identify that <math>k^2=3</math>, and so <math>k=\sqrt{3}</math>. Hence, we fix the expression by multiplying and dividing by <math>\sqrt{3}</math>,
On the other hand, we identify that <math>k^2=3</math>, and so <math>k=\sqrt{3}</math>. Hence, we fix the expression by multiplying and dividing by <math>\sqrt{3}</math>,


<math>\mathcal{L}^{-1}[X_1(s)] = \mathcal{L}^{-1} \left [ \dfrac{-1}{s^2+3} \right ] = -\dfrac{1}{\sqrt{3}} \mathcal{L}^{-1} \left [ \dfrac{\sqrt{3}}{s^2+3} \right ] = -\dfrac{1}{\sqrt{3}} sin(\sqrt{3}t)</math>
:<math>x_1(t)=\mathcal{L}^{-1}[X_1(s)] = \mathcal{L}^{-1} \left [ \dfrac{-1}{s^2+3} \right ] = -\dfrac{1}{\sqrt{3}} \mathcal{L}^{-1} \left [ \dfrac{\sqrt{3}}{s^2+3} \right ] = -\dfrac{1}{\sqrt{3}} sin(\sqrt{3}t)</math>

<math>\mathcal{L}^{-1}[X_2(s)] = \mathcal{L}^{-1} \left [ \dfrac{1}{s^2+3} \right ] = \dfrac{1}{\sqrt{3}} \mathcal{L}^{-1} \left [ \dfrac{\sqrt{3}}{s^2+3} \right ] = \dfrac{1}{\sqrt{3}} sin(\sqrt{3}t)</math>
:<math>x_2=(t)\mathcal{L}^{-1}[X_2(s)] = \mathcal{L}^{-1} \left [ \dfrac{1}{s^2+3} \right ] = \dfrac{1}{\sqrt{3}} \mathcal{L}^{-1} \left [ \dfrac{\sqrt{3}}{s^2+3} \right ] = \dfrac{1}{\sqrt{3}} sin(\sqrt{3}t)</math>


A plot of the system displacement is shown on Figure 2.
A plot of the system displacement is shown on Figure 2.



== Initial-Value & Final-Value Theorem ==
== Initial-Value & Final-Value Theorem ==
Line 76: Line 67:
Thus, applying both theorems to our the Laplace Transforms,
Thus, applying both theorems to our the Laplace Transforms,


<math>\lim_{s\rightarrow \infty} sX_1(s)=\lim_{s\rightarrow \infty} s\dfrac{-1}{s^2+3}=\lim_{s\rightarrow \infty} \dfrac{-s}{s^2+3}=\dfrac{-\infty}{\infty^2+3}=0=x_1(0)\,</math>
:<math>\lim_{s\rightarrow \infty} sX_1(s)=\lim_{s\rightarrow \infty} s\dfrac{-1}{s^2+3}=\lim_{s\rightarrow \infty} \dfrac{-s}{s^2+3}=\dfrac{-\infty}{\infty^2+3}=0=x_1(0)\,</math>
:<math>\lim_{s\rightarrow 0} sX_1(s)==\lim_{s\rightarrow 0} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow 0} \dfrac{s}{s^2+3}=\dfrac{0}{0^2+3}=0=x_1(\infty)\,</math>

<math>\lim_{s\rightarrow \infty} sX_2(s)=\lim_{s\rightarrow \infty} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow \infty} \dfrac{s}{s^2+3}=\dfrac{\infty}{\infty^2+3}=0=x_2(0)\,</math>

:<math>\lim_{s\rightarrow \infty} sX_2(s)=\lim_{s\rightarrow \infty} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow \infty} \dfrac{s}{s^2+3}=\dfrac{\infty}{\infty^2+3}=0=x_2(0)\,</math>
:<math>\lim_{s\rightarrow 0} sX_2(s)==\lim_{s\rightarrow 0} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow 0} \dfrac{s}{s^2+3}=\dfrac{0}{0^2+3}=0=x_2(\infty)\,</math>


<math>\lim_{s\rightarrow 0} sX_1(s)==\lim_{s\rightarrow 0} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow 0} \dfrac{s}{s^2+3}=\dfrac{0}{0^2+3}=0=x_1(\infty)\,</math>
<math>\lim_{s\rightarrow 0} sX_2(s)==\lim_{s\rightarrow 0} s\dfrac{1}{s^2+3}=\lim_{s\rightarrow 0} \dfrac{s}{s^2+3}=\dfrac{0}{0^2+3}=0=x_2(\infty)\,</math>


== Bode Plot ==
== Bode Plot ==
[[Image:Mass_spring_bode_plot.png|thumb|Figure 3. Bode Diagram.]]The Bode plot can be easily done using a program like Octave or MATLAB. The code is displayed below. From Figure 3 we may notice that the Amplitude vs. Frequency plot for both functions overlaps. On the other hand, the Phase vs. Frequency plot for both functions have opossite magnitudesNotice that both functions overlaps.
The Bode plot can be easily done using a program like Octave or MATLAB.

h1=tf([-1],[1 0 3]);
h2=tf([1],[1 0 3]);
bode(h1,'b',h2,'r');


== Magnitude Frequency Response ==
== Magnitude Frequency Response ==
Line 92: Line 87:


== State Equation Model ==
== State Equation Model ==

= References =

Revision as of 00:35, 24 November 2009

Figure 1. Coupled Spring System.

Problem Statement

Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when , , and , , , and .

Solution

At positions and , the masses and are in equilibrium. Thus, the motion equations for and are,


where and represent the Newton's Second Law of Motion and and represent the net forces acting in the masses.

Laplace Transform

Applying the Laplace Transform to the motion equations and plugging the values of , , , , , , , , and for this systems, we obtain,

Finally, solving for and yields,


Inverse Laplace Transform

Figure 2. Coupled Spring System Displacement.

First, we recognize that

On the other hand, we identify that , and so . Hence, we fix the expression by multiplying and dividing by ,

A plot of the system displacement is shown on Figure 2.


Initial-Value & Final-Value Theorem

The initial-value and final-value theorem can be useful the finding the behavior of a functionat small and large times respectively. By definition, the Initial-Value Theorem is,

and the Final-Value Theorem is,

Thus, applying both theorems to our the Laplace Transforms,



Bode Plot

Figure 3. Bode Diagram.

The Bode plot can be easily done using a program like Octave or MATLAB. The code is displayed below. From Figure 3 we may notice that the Amplitude vs. Frequency plot for both functions overlaps. On the other hand, the Phase vs. Frequency plot for both functions have opossite magnitudesNotice that both functions overlaps.

h1=tf([-1],[1 0 3]);
h2=tf([1],[1 0 3]);
bode(h1,'b',h2,'r');

Magnitude Frequency Response

Convolution

State Equation Model

References