Laplace transforms: R series with RC parallel circuit: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 30: Line 30:




: <math>v(t0-)=0 Volts</math>
: <math>v(t0-)=0 Volts\,</math>


: <math>v(t)=10 Volts</math>
: <math>v(t)=10 Volts\,</math>
: <math>R_1=20 \boldsymbol{\Omega}</math>
: <math>R_1=20 \boldsymbol{\Omega}\,</math>


: <math>R_2=30 \boldsymbol{\Omega}</math>
: <math>R_2=30 \boldsymbol{\Omega}\,</math>


: <math>C=.1 Farad</math>
: <math>C=.1 Farad\,</math>




Line 48: Line 48:
:Loop 1
:Loop 1


:<math>v(t)=R1(i_1+i_2)+R2(i_1)</math>
:<math>v(t)=R1(i_1+i_2)+R2(i_1)\,</math>


:<math>10=20(i_1+i_2)+30(i_1)</math>
:<math>10=20(i_1+i_2)+30(i_1)\,</math>


:<math>i_1=(10-20i_2)/50</math>_______________________________________equation (1)
:<math>i_1=(10-20i_2)/50\,</math>_______________________________________equation (1)




:Loop 2
:Loop 2


:<math>v(t)=R1(i_1+i_2)+\dfrac{1}{C}\int{i_2 dt}</math>
:<math>v(t)=R1(i_1+i_2)+\dfrac{1}{C}\int{i_2 dt}\,</math>


:<math>10=20(i_1+i_2)+\dfrac{1}{.1}\int{i_2 dt}</math>_______________________equation (2)
:<math>10=20(i_1+i_2)+\dfrac{1}{.1}\int{i_2 dt}\,</math>_______________________equation (2)




Line 68: Line 68:
:Substituting equation (1) into equation (2) gives...
:Substituting equation (1) into equation (2) gives...


:<math>20((10-20i_2)/50+i_2)+\dfrac{1}{.1}\int{i_2 dt}=10</math>
:<math>20((10-20i_2)/50+i_2)+\dfrac{1}{.1}\int{i_2 dt}=10\,</math>


:simplifies to...
:simplifies to...


:<math>12i_2+10\int{i_2 dt}=6</math>
:<math>12i_2+10\int{i_2 dt}=6\,</math>




Line 79: Line 79:




:<math>\mathcal{L}\left\{\int_{0-}^\infty{(i_2) dt}\right\}=I_2/s</math>
:<math>\mathcal{L}\left\{\int_{0-}^\infty{(i_2) dt}\right\}=I_2/s\,</math>


:<math>\mathcal{L}\left\{(1)\right\}=1/s</math>
:<math>\mathcal{L}\left\{(1)\right\}=1/s\,</math>




:<math>12I_2+10I_2/S=6/S</math>
:<math>12I_2+10I_2/S=6/S\,</math>


:<math>I_2(12+10/S)=6/S</math>
:<math>I_2(12+10/S)=6/S\,</math>


:<math>I_2=6/(12S+10)</math>
:<math>I_2=6/(12S+10)\,</math>




:<math>I_2=(1/2)(1/(S+(5/6))</math>
:<math>I_2=(1/2)(1/(S+(5/6))\,</math>




Line 98: Line 98:




:<math>i_2=(1/2)(e^{-(5/6)t})</math>
:<math>i_2=(1/2)(e^{-(5/6)t})\,</math>


:substitute this equation back into equation (1)
:substitute this equation back into equation (1)


:<math>i_1=(10-20(.5e^{-(5t/6)}))/50</math>
:<math>i_1=(10-20(.5e^{-(5t/6)}))/50\,</math>


:<math>i_1=(1/5)(1-e^{-(5t/6)})</math>
:<math>i_1=(1/5)(1-e^{-(5t/6)})\,</math>




Voltage on Capacitor
Voltage on Capacitor


:<math>v_{capacitor}=10/20(i_1+i_2)</math>
:<math>v_{capacitor}=10/20(i_1+i_2)\,</math>


:<math>v_{capacitor}=10-20((1/5)(1-e^{-(5t/6)})+(1/2)(e^{-(5t/6)}))</math>
:<math>v_{capacitor}=10-20((1/5)(1-e^{-(5t/6)})+(1/2)(e^{-(5t/6)}))\,</math>


:<math>v_{capacitor}=10-4+4e^{-(5t/6)}-10e{-(5t/6)}</math>
:<math>v_{capacitor}=10-4+4e^{-(5t/6)}-10e{-(5t/6)}\,</math>




Answer:
Answer:
::<math>v_{capacitor}=6-6e^{-(5t/6)}</math> Volts
::<math>v_{capacitor}=6-6e^{-(5t/6)}\,</math> Volts




Line 124: Line 124:
Initial Value Theorem
Initial Value Theorem


:<math>\lim_{s\rightarrow \infty} sF(s)=f(0)</math>
:<math>\lim_{s\rightarrow \infty} sF(s)=f(0)\,</math>


Final Value Theorem
Final Value Theorem


:<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)</math>
:<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)\,</math>








::<math>v(t0)=0</math> Volts
::<math>v(t0)=0\,</math> Volts


::<math>v(t{\infty})=6</math> Volts
::<math>v(t{\infty})=6\,</math> Volts


----
----

Revision as of 14:54, 22 October 2009

Problem Statement

Find the Voltage across the capacitor for t>=0:
Voltage across capacitor at t({0-})=0
Fig (1)














Use Loop Equations to solve for the currents in and


Loop 1
_______________________________________equation (1)


Loop 2
_______________________equation (2)


Solve equations (1) and (2) simultaneously


Substituting equation (1) into equation (2) gives...
simplifies to...


Take the Laplace Transform to move to the S-domain





Take the inverse Laplace transform to move back into the t-domain


substitute this equation back into equation (1)


Voltage on Capacitor


Answer:

Volts


Applying the Initial and Final Theorems:

Initial Value Theorem

Final Value Theorem



Volts
Volts

Written by: Andrew Hellie

Checked by: