Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 7: Line 7:


==Solution==
==Solution==
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Substituting numbers into the equations, we have


<math>0.5\frac{di_1}{dt}+80i_2=50</math>
<math>4\frac{di_1}{dt}+20i_2=50</math>


<math>80(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>
<math>20(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>


Applying the Laplace transform to each equation gives
Applying the Laplace transform to each equation gives


<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+80\mathcal{L}\left\{i_2\right\}=50</math>
<math>4(s\mathcal{L}\left\{i_1\right\}-i_1(0))+20\mathcal{L}\left\{i_2\right\}=50</math>


<math>\Rightarrow4sI_1(s)+20I_2(s)=\frac{50}{s}</math>
<math>0.008(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>


<math>\Rightarrow\frac{1}{2}sI_1(s)+80I_2(s)=\frac{50}{s}</math>
<math>0.005(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>


<math>-125I_1(s)+[s+125]I_2(s)=0</math>
<math>\Rightarrow-500I_1(s)+[s+500]I_2(s)=0</math>


Solving for <math>I_2(s)</math>
Solving for <math>I_2(s)</math>


<math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}</math>
<math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}</math>


We find the partial decomposition
We find the partial decomposition


Let <math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}=\frac{A}{s}+\frac{Bs+C}{s^2+125s+20000}</math>
Let <math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}=\frac{A}{s}+\frac{Bs+C}{s^2+500s+2500}</math>


<math>\Rightarrow12500=A(s^2+125s+20000)+(Bs+C)s</math>
<math>\Rightarrow6250=A(s^2+500s+2500)+(Bs+C)s</math>


<math>\Rightarrow12500=As^2+125As+20000A+Bs^2+Cs</math>
<math>\Rightarrow62500=As^2+500As+2500A+Bs^2+Cs</math>


Comparing the coefficients we get
Comparing the coefficients we get


<math>A=\frac{5}{8},B=-5,C=-625</math>
<math>A=\frac{5}{2},B=-5,C=-1250</math>


Thus
Thus
<math>I_2(s)=\frac{5}{8s}-\frac{5s+625}{s^2+125s+20000}</math>
<math>I_2(s)=\frac{5}{2s}-\frac{5s+1250}{s^2+500s+2500}</math>


Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in


<math>I_1(s)= \frac{100s+12500}{s(s^2+125s+20000)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math>
<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math>

Taking the Inverse Laplace transform yields

<math>\mathcal{L}^{-1}\left\{I_1(s)\right\}=\frac{5}{8}+\frac{39\sqrt{103}}{824}sin*(\frac{25}{2}\sqrt{103}*t)</math>


<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}=</math>

Revision as of 18:24, 1 December 2009

Problem Statement

Using the formulas



Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Applying the Laplace transform to each equation gives

Solving for

We find the partial decomposition

Let

Comparing the coefficients we get

Thus

Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in

Taking the Inverse Laplace transform yields