Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(22 intermediate revisions by the same user not shown)
Line 4: Line 4:
<math>RC\dfrac{di_R}{dt}+i_R-i_C=0</math>
<math>RC\dfrac{di_R}{dt}+i_R-i_C=0</math>


Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.


==Solution==
==Solution==
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Substituting numbers into the equations, we have


<math>0.5\frac{di_1}{dt}+60i_2=0</math>
<math>4\frac{di_1}{dt}+20i_2=50</math>


<math>60(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>
<math>20(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>


Applying the Laplace transform to each equation gives
Applying the Laplace transform to each equation gives


<math>\frac{1}{2}(s^2\mathcal{L}{I_1}(s)-i_1(0))+60\mathcal{L}\left\{i_2\right\}</math>
<math>4(s\mathcal{L}\left\{i_1\right\}-i_1(0))+20\mathcal{L}\left\{i_2\right\}=50</math>


<math></math>
<math>\Rightarrow4sI_1(s)+20I_2(s)=\frac{50}{s}</math>

<math>0.005(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>

<math>\Rightarrow-500I_1(s)+[s+500]I_2(s)=0</math>

Solving for <math>I_2(s)</math>

<math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}</math>

We find the partial decomposition

Let <math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}=\frac{A}{s}+\frac{Bs+C}{s^2+500s+2500}</math>

<math>\Rightarrow6250=A(s^2+500s+2500)+(Bs+C)s</math>

<math>\Rightarrow62500=As^2+500As+2500A+Bs^2+Cs</math>

Comparing the coefficients we get

<math>A=\frac{5}{2},B=-5,C=-1250</math>

Thus
<math>I_2(s)=\frac{5}{2s}-\frac{5s+1250}{s^2+500s+2500}</math>

Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in

<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{s}-\frac{5s+2475}{s^2+500s+2500}</math>

In order to make it nicer on us we need to complete the square as follows

<math> s^2+500s+2500=0</math>

<math>\Rightarrow s^2+500s=-2500</math>

<math>\Rightarrow s^2+500s+\left(\frac{500}{2}\right)^2=-2500+\left(\frac{500}{2}\right)^2</math>

<math>\Rightarrow s^2+500s+62500=6000</math>

<math>\Rightarrow (s+250)^2-(100\sqrt{6})^2=0</math>

Thus

<math>I_2(s)=\frac{5}{2s}-5\frac{s+250}{(s+250)^2-(100\sqrt{6})^2}-\frac{5\sqrt{6}}{12}\frac{100\sqrt{6}}{(s+250)^2-(100\sqrt{6})^2}</math>


Taking the Inverse Laplace transform gives

<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}= i_2(t) =\frac{5}{2}-5e^{-250t}cosh100\sqrt{6}t-\frac{5\sqrt{6}}{12}5e^{-250t}sinh100\sqrt{6}t</math>

==Initial Value Theorem==

<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>

<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>

<math> \Rightarrow i(0)=0</math>

<math>\lim_{s \to \infty}s\frac{6250}{s(s^2+500s+2500)}=i(0)</math>

<math> \Rightarrow i(0)=0</math>

==Final Value Theorem==

<math>\lim_{s \to 0}sI(s)=f(\infty)</math>

<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(\infty)</math>

<math>\Rightarrow i(\infty)=0</math>

<math>\lim_{s \to 0}s\frac{6250}{s(s^2+500s+2500)}=i(\infty)</math>

<math>\Rightarrow i(\infty)=0</math>

==Bode Plots==
The following are bode plots for the transfer functions



[[Image:I1_.jpg|400px|thumb|left|<math>H(s)_1=\frac{25s+12500}{s(s^2+500s+2500)}</math>]]



[[Image:I2_.jpg|400px|thumb|left|<math>H(s)_2=\frac{6250}{s(s^2+500s+2500)}</math>]]

Latest revision as of 16:35, 13 December 2009

Problem Statement

Using the formulas



Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Applying the Laplace transform to each equation gives

Solving for

We find the partial decomposition

Let

Comparing the coefficients we get

Thus

Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in

In order to make it nicer on us we need to complete the square as follows

Thus


Taking the Inverse Laplace transform gives

Initial Value Theorem

Final Value Theorem

Bode Plots

The following are bode plots for the transfer functions