Laplace transforms: Under-damped Mass-Spring System on an Incline: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:


[[Image:BP_Setup-1.jpg|right]]
[[Image:BP_Setup-1.jpg|right]]



===Initial Conditions and Values===
===Initial Conditions and Values===
Line 50: Line 51:
\dot{x}(0) = 0 \frac{m}{s}
\dot{x}(0) = 0 \frac{m}{s}
</math>
</math>



===Force Equations===
===Force Equations===
Line 90: Line 92:
\Rightarrow\ \ddot{x} + \frac{\lambda}{m}\,\dot{x}+\frac{k}{m}\,x=g \sin \theta
\Rightarrow\ \ddot{x} + \frac{\lambda}{m}\,\dot{x}+\frac{k}{m}\,x=g \sin \theta
</math>
</math>



===Laplace Transform===
===Laplace Transform===
Line 97: Line 100:


<math>
<math>
\Rightarrow\ s^2\,X(s) - s\,x(0) - x'(0) + \frac{\lambda}{m}\,s\,X(s) - \frac{\lambda}{m}\,x(0) + \frac{k}{m}\,X(s) = g \sin \theta \, \left(\frac{1}{s}\right)
\Rightarrow\ s^2\,X(s) - s\,x(0) - \dot{x}(0) + \frac{\lambda}{m}\,s\,X(s) - \frac{\lambda}{m}\,x(0) + \frac{k}{m}\,X(s) = g \sin \theta \, \left(\frac{1}{s}\right)
</math>
</math>


<math>
<math>
\Rightarrow\ X(s) \left(s^2 + \frac{\lambda}{m}\,s + \frac{k}{m} \right) = g \sin \theta \, \left( \frac {1}{s} \right) + s\,x(0) + x'(0) + \frac{\lambda}{m}\, x(0)
\Rightarrow\ X(s) \left(s^2 + \frac{\lambda}{m}\,s + \frac{k}{m} \right) = g \sin \theta \, \left( \frac {1}{s} \right) + s\,x(0) + \dot{x}(0) + \frac{\lambda}{m}\, x(0)
</math>
</math>


If we let <math>x(0)\text{ and }x'(0)</math> be 0 and rearrange the equation,
If we let <math>x(0)\text{ and }\dot{x}(0)</math> be 0 and rearrange the equation,


<math>
<math>
Line 119: Line 122:
X(s)=g\sin\theta \left( \frac{1}{s} \right) \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
X(s)=g\sin\theta \left( \frac{1}{s} \right) \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+x(0) \, \left( \frac{s}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+x(0) \, \left( \frac{s}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+x'(0) \, \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+\dot{x}(0) \, \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+\frac{\lambda}{m} \, x(0) \, \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
+\frac{\lambda}{m} \, x(0) \, \left( \frac{1}{s^2 + \frac{\lambda}{m} \, s + \frac{k}{m}} \right)
</math>
</math>
Line 141: Line 144:
e^{\frac{-1}{6} \, t} \, \left[ \frac{2 \, \sqrt{159}}{53} \, \sin {\left( \frac{\sqrt{159} \, t}{6} \right)} \right]
e^{\frac{-1}{6} \, t} \, \left[ \frac{2 \, \sqrt{159}}{53} \, \sin {\left( \frac{\sqrt{159} \, t}{6} \right)} \right]
</math>
</math>



===Equation of Motion===
===Equation of Motion===
Putting it all back together again gives,

<math>
x(0) =
g \, \sin {\theta} \, \left( e^{\frac{-1}{6} \, t} \, \left[ \frac{-9}{40} \cos {\left( \frac{\sqrt{159} \, t}{6} \right)} - \frac{3 \, \sqrt{159}}{2120} \, \sin {\left( \frac{\sqrt{159} \, t}{6} \right)} \right] + \frac{9}{40} \right)
</math>

<math>
+ \,
x(0) \, \left( e^{\frac{-1}{6} \, t} \, \left[ \cos{\left( \frac{\sqrt{159} \, t}{6} \right)} - \frac{\sqrt{159}}{159} \, \sin {\left( \frac{\sqrt{159} \, t}{6} \right)} \right] \right)
</math>

<math>
+
\left( \dot{x}(0) + \frac{\lambda}{m} \, x(0) \right) \, \left( e^{\frac{-1}{6} \, t} \, \left[ \frac{2 \, \sqrt{159}}{53} \, \sin {\left( \frac{\sqrt{159} \, t}{6} \right)} \right] \right)
</math>




==Part 2 - Final and Initial Value Theorems==
==Part 2 - Final and Initial Value Theorems==

Revision as of 19:50, 26 October 2009

Brandon.plubell 05:44, 26 October 2009 (UTC)

Under-Damped Mass-Spring System on an Incline

Part 1 - Use Laplace Transformations

Problem Statement

Find the equation of motion for the mass in the system subjected to the forces shown in the Free Body Diagram (FBD). The inclined surface is coated in SAE 30 oil.

BP Setup-1.jpg


Initial Conditions and Values

  • A is the area of the box in contact with the surface
  • g is the gravitational acceleration field constant
  • bt is the thickness of the fluid covering the inclined surface
  • μ is the viscosity constant of the fluid;
  • m is the mass of the box
  • k is the spring constant

Let the initial conditions be:


Force Equations

BP FBD-1.jpg

The sum of the moments in the x direction yields the equatiom


Where

To make the algebra easier, let

Then, from the sum of forces equation:


Laplace Transform

If we let be 0 and rearrange the equation,

This is the transfer function that will be used in the Bode plot and provide valuable information about the system.


Inverse Laplace Transform

Since the Laplace Transform is a linear transform, we need only find three inverse transforms. All of the these have complex roots, since . Because I am not yet comfortable finding the inverse with complex roots by hand, I used a laplace transform program for the TI-89.


Equation of Motion

Putting it all back together again gives,


Part 2 - Final and Initial Value Theorems

Initial Value Theorem

Final Value Theorem

Part 3 - Bode Plot

Part 4 - Breakpoints and Asymptotes on Bode Plot

Part 5 - Convolution