Linear Time Invariant System: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
===Eigenfunctions and Eigenvalues of an LTI Systems===
===Eigenfunctions and Eigenvalues of an LTI Systems===


It is an interesting exercise to show that <math>e^{j\omega t}</math> are eigenfunctions of any LTI system. The eigenvalues are <math>\omega</math>.
It is an interesting exercise to show that <math>e^{j\omega t}</math> are eigenfunctions of any LTI system. The eigenvalues are <math>H(\omega)</math>.



{| class="wikitable" border="1"
{| class="wikitable" border="1"
Line 19: Line 18:
| <math>x(t) = \int_{-\infty}^{\infty} x(\lambda) \delta (t- \lambda ) d \lambda</math> || <math>\int_{-\infty}^{\infty} x(\lambda) h(t- \lambda ) d \lambda = y(t)</math> || Superposition
| <math>x(t) = \int_{-\infty}^{\infty} x(\lambda) \delta (t- \lambda ) d \lambda</math> || <math>\int_{-\infty}^{\infty} x(\lambda) h(t- \lambda ) d \lambda = y(t)</math> || Superposition
|-
|-
| <math>e^{j\omega t} </math> || <math>\int_{-\infty}^{\infty} e^{j \omega \lambda} h(t- \lambda ) d \lambda = \int_{-\infty}^{\infty} e^{j \omega (t- \lambda)} h(\lambda ) d \lambda</math>
| <math>e^{j\omega t} </math> || <math>\int_{-\infty}^{\infty} e^{j \omega \lambda} h(t- \lambda ) d \lambda = \int_{-\infty}^{\infty} e^{j \omega (t- \lambda)} h(\lambda ) d \lambda = e^{j \omega t} \int_{-\infty}^{\infty} e^{-j \omega \lambda} h(\lambda ) d \lambda = e^{j \omega t} H(\omega)</math> || Applying the line above to <math>e^{j \omega t}</math>
|}
|}

Note that the last line is obtained by doing a change of variables, then recognizing the Fourier Transform.

Latest revision as of 22:40, 6 January 2010

Linear Time Invariant Systems (LTI Systems)

A linear time invariant system is one that is linear (superposition and proportionality apply) and one that doesn't change with time. For example a circuit with fixed capacitors, resistors, and inductors having an input and an output is linear and time invariant. If a capacitor changed value with time, then it would not be time invariant.

Eigenfunctions and Eigenvalues of an LTI Systems

It is an interesting exercise to show that are eigenfunctions of any LTI system. The eigenvalues are .

LTI System
Input Output Reason
Given
Time invariance
Proportionality
Superposition
Applying the line above to

Note that the last line is obtained by doing a change of variables, then recognizing the Fourier Transform.