User talk:Gregory.peterson: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
=Using the Laplace Transform to solve a spring mass system that is critically damped=


==Problem Statement==
<math>m\ddot{x}+b\dot{x}-k(f-x)=0</math>
An 98 Newton weight is attached to a spring with a spring constant k of 5 N/m.
The spring is stretched 4 m and rests at its equilibrium position.
It is then released from rest with an initial upward velocity of 2 m/s.
The system contains a damping force of 2 times the initial velocity.


==Solution==



<math>\ddot{x}+\frac{b}{m}\dot{x}+\frac{k}{m}x=\frac{k}{m}f</math>
===Things we know===


<math>m=\frac{98}{9.81}</math>

<math>\text {k=40}\,</math>

<math>\text {Damping constant C=40}\,</math>

<math>\text {x(0)=0}\,</math>

<math>\dot{x}(0)=-4</math>

<math>\text {Standard equation: }\,</math>
<math>m\frac{d^2x}{dt^2}+C\frac{dx}{dt}+khx=0</math>


===Solving the problem===
<math>\text {Therefore the equation representing this system is.}\,</math>

<math>\frac{98}{9.8} \frac{d^2x}{dt^2}=-40x-40\frac{dx}{dt}</math>

<math>\text {Now we put the equation in standard form}\,</math>

<math>\frac{d^2x}{dt^2}+\frac{40}{10}\frac{dx}{dt}+\frac{40}{10}x=0</math>


<math>\text {Now that we have the equation written in standard form we need to send}\,</math>
<math>\text {it through the Laplace Transform.}\,</math>

<math>\mathcal{L}[\frac{d^2x}{dt^2}+\frac{40}{10}\frac{dx}{dt}+\frac{20}{5}x]</math><br /><br />

<math>\text {And we get the equation (after some substitution and simplification)}.\,</math>

<math>\mathbf s^2 {X}(s)+4\mathbf s{X}(s)+4\mathbf{X}(s)=-4</math><br /><br />

<math>\mathbf {X}(s)(s^2+4s+4)=-4</math><br /><br />


<math>\mathbf {X}(s)=-\frac{4}{(s+2)^2} </math><br /><br />

<math>\text {Now that we have completed the Laplace Transform}\,</math>
<math>\text {and solved for X(s) we must so an inverse Laplace Transform. }\,</math>

<math>\mathcal{L}^{-1}[-\frac{4}{(s+2)^2}]</math><br /><br />

<math>\text {and we get}\,</math>

<math>\mathbf {x}(t)=-4te^{-2t}</math><br /><br />

<math>\text {So there you have it the equation of a Critically Damped spring mass system.}\,</math>

==Apply the Initial and Final Value Theorems to find the initial and final values==

:Initial Value Theorem

::<math>\lim_{s\rightarrow \infty} sF(s)=f(0)\,</math>

:Final Value Theorem

::<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)\,</math>


===Applying this to our problem===

<math>\text {The Initial Value Theorem}\,</math>

<math>\lim_{s\rightarrow \infty} \mathbf {sX}(s)=-\frac{4}{(s+2)^2}\,</math>

<math>\lim_{s\rightarrow \infty} \mathbf s{X}(s)=-\frac{4}{(\infty+2)^2}=0\,</math>


<math>\text {So as you can see the value for the initial position will be 0. }\,</math>

<math>\text {Which makes sense because the system is initially in equilibrium. }\,</math>

<math>\text {The Final Value Theorem}\,</math>

<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{4}{(s+2)^2}\,</math>


<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{4}{(0+2)^2}=-\frac 4 {4}\,</math>

<math>\text {This shows the final value to be}\,</math>
<math>-\frac{4}{4}ft</math>

<math>\text {Which appears to mean the system will be right below equilibrium after a long time. }\,</math>


==Bode Plot of the transfer function==

===Transfer Function===

<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br />

Revision as of 00:57, 23 October 2009

Using the Laplace Transform to solve a spring mass system that is critically damped

Problem Statement

An 98 Newton weight is attached to a spring with a spring constant k of 5 N/m. The spring is stretched 4 m and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 2 m/s. The system contains a damping force of 2 times the initial velocity.

Solution

Things we know


Solving the problem















Apply the Initial and Final Value Theorems to find the initial and final values

Initial Value Theorem
Final Value Theorem


Applying this to our problem




Bode Plot of the transfer function

Transfer Function