Coupled Oscillator: Coupled Mass-Spring System with Damping: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
For mass 1:
For mass 1:


<math> + \uparrow \sum F_{y_1} = m_1 \ddot{x}_1 \Rightarrow\ m_1 \ddot{x}_1=-b_1\dot{x}_1-k_1s_1+k_2s_2+m_1g</math>
<math> + \uparrow \sum F_{y_1} = m_1 \ddot{x}_1 \Rightarrow\ m_1 \ddot{x}_1=-2b_1\dot{x}_1-k_1s_1+k_2s_2+m_1g</math>




For mass 2:
For mass 2:


<math> + \uparrow \sum F_{y_2} = m_2 \ddot{x}_2 \Rightarrow\ m_2 \ddot{x}_2=-b_2\dot{x}_3-k_2s_2+m_2g</math>
<math> + \uparrow \sum F_{y_2} = m_2 \ddot{x}_2 \Rightarrow\ m_2 \ddot{x}_2=-2b_2\dot{x}_3-k_2s_2+m_2g</math>




Line 47: Line 47:




<math> \ddot{x}_1= - \frac{b_1}{m_1} \dot{x}_1 - \frac{k_1}{m_1}l_1 - \frac{k_1}{m_1}x_1 + \frac{k_2}{m_2}l_1 + \frac{k_2}{m_2}x_2 + g </math>
<math> \ddot{x}_1= - \frac{2b_1}{m_1} \dot{x}_1 - \frac{k_1}{m_1}l_1 - \frac{k_1}{m_1}x_1 + \frac{k_2}{m_2}l_1 + \frac{k_2}{m_2}x_2 + g </math>


and
and


<math> \ddot{x}_2= - \frac{b_2}{m_2} \dot{x}_2 - \frac{k_2}{m_2}l_2 - \frac{k_2}{m_2}x_2 + g </math>
<math> \ddot{x}_2= - \frac{2b_2}{m_2} \dot{x}_2 - \frac{k_2}{m_2}l_2 - \frac{k_2}{m_2}x_2 + g </math>

Revision as of 14:35, 29 November 2009

Problem Statement

For the below system set up a set of state variable equations, and then solve using Laplace transformations. Assume all motion takes place in the vertical directions.

Fig. 1

Initial Values

For the upper mass:

And for the lower mass:

Find the Force Equations

First we need to sum forces in the y-direction for each block.

For mass 1:


For mass 2:


For the cases above

and

where l is the unstretched length of the spring and x is the displacement of the spring.


So if we put the equations above into the correct form we have:


and