Coupled Oscillator: Coupled Mass-Spring System with Damping: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 52: Line 52:


<math> \ddot{x}_2= - \frac{2b_2}{m_2} \dot{x}_2 - \frac{k_2}{m_2}l_2 - \frac{k_2}{m_2}x_2 + g </math>
<math> \ddot{x}_2= - \frac{2b_2}{m_2} \dot{x}_2 - \frac{k_2}{m_2}l_2 - \frac{k_2}{m_2}x_2 + g </math>

==State Space Equation==
The general form for the state equation is as shown below:

<math> \underline{\dot{x}}(t) = \widehat{A} \, \underline{x}(t) + \widehat{C} \, \underline{u}(t) </math>


Where <math>\widehat{M}</math> denotes a matrix and <math>\underline{v}</math> denotes a vector.

If we let <math>x_1 \frac{}{}</math>, <math>\dot{x}_1 \frac{}{}</math>, <math>x_2 \frac{}{}</math>, and <math>\dot{x_2} \frac{}{}</math> be the state variables, then

<math>

\begin{bmatrix}
\dot{x}_1 \\
\ddot{x}_1 \\
\dot{x}_2 \\
\ddot{x}_2
\end{bmatrix}

=

</math>
<math>

\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}
0 & 0 & 0 & 0 \\
-1 & \frac{k_1}{m_1} & \frac{-k_2}{m_1} & \frac{1}{m_1} \\
0 & 0 & 0 & 0 \\
-1 & 0 & \frac{k_2}{m_2} & 0
\end{bmatrix}

\begin{bmatrix}
g \\
L_1 \\
L_2 \\
F
\end{bmatrix}

</math>

Revision as of 12:30, 1 December 2009

Problem Statement

For the below system set up a set of state variable equations, and then solve using Laplace transformations. Assume all motion takes place in the vertical directions.

Fig. 1

Initial Values

For the upper mass:

And for the lower mass:

Find the Force Equations

First we need to sum forces in the y-direction for each block.

For mass 1:


For mass 2:


For the cases above

and

where l is the unstretched length of the spring and x is the displacement of the spring.


So if we put the equations above into the correct form we have:


and

State Space Equation

The general form for the state equation is as shown below:


Where denotes a matrix and denotes a vector.

If we let , , , and be the state variables, then