Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>



In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
Line 41: Line 42:


: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>
: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>
: <math>\boldsymbol{\Theta}_1(s^2A+C)-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>


: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math>
: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math>

At time <math>t=0</math> we assume that <math>\theta_1(t)^{\prime}=\theta_2(t)^{\prime}=0</math>. Thus, solvin for <math>\boldsymbol{\Theta}_1</math> and <math>\boldsymbol{\Theta}_2</math> we obtain,

: <math>\boldsymbol{\Theta}_1=\dfrac{sA\theta_1+sB\theta_2-s^2B\boldsymbol{\Theta}_2}{(s^2A+C)}</math>
: <math>\boldsymbol{\Theta}_2=\dfrac{sB\theta_1+sD\theta_2-s^2B\boldsymbol{\Theta}_1}{(s^2D+E)}</math>



=== State Space ===

Revision as of 22:45, 6 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear


In order to linearize these equations, we assume that the displacements and are small enough so that and . Thus,

Solution

Laplace Transform

Since our concern is about the motion functions, we will assign the masses and , the rod lenghts and , and gravitational force constants to different variables as follows,

Hence,

Solving the Laplace Transform system yeilds,

At time we assume that . Thus, solvin for and we obtain,


State Space