Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
By '''Jimmy Apablaza'''
By '''Jimmy Apablaza'''
By '''Jimmy Apablaza'''


This problem is described in Page 321-322, Section 7.6 of the ''A first Course in Differential Equations'' textbook, 8ED (ISBN 0-534-41878-3).
[[Image:Fig1_Double_Pendulum.png|thumb|Figure 1. Coupled Pendulum.‎]]Coming soon...

__TOC__

[[Image:Fig1_Double_Pendulum.png|thumb|Figure 1. Coupled Pendulum.‎]]
= Problem Statement =
Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

'''Assumptions:'''
* the system oscillates vertically under the influence of gravity.
* the mass of both rod are neligible
* no dumpung forces act on the system
* positive direction to the right.

The system of differential equations describing the motion is nonlinear

: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2)</math>

Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when <math>k_1=k_2=k_3=1 \frac{}{}</math>, <math>m_1=m_2=1 \frac{}{}</math>, and <math>x_1(0)=0 \frac{}{}</math>, <math>x'1(0)=-1 \frac{}{}</math>, <math>x_2(0)=0 \frac{}{}</math>, and <math>x'_2(0)=1 \frac{}{}</math>.

Revision as of 21:20, 6 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when , , and , , , and .