Fourier Transform Property review: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: == Max Woesner == Back to my Home Page === Homework #5 - Reveiew a Fourier Transform Property === <b><u>Joshua Sarris</u></b> derived the following Four...)
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
=== Homework #5 - Reveiew a Fourier Transform Property ===
=== Homework #5 - Reveiew a Fourier Transform Property ===


[[Joshua Sarris|<b><u>Joshua Sarris</u></b>]] derived the following Fourier Transform Property [[Fourier Transform Properties|here]] for Homework #4.<br><br>
[[Joshua Sarris|Joshua Sarris]] derived the following Fourier Transform Property [[Fourier Transform Properties|here]] for Homework #4.<br><br>
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''


Line 43: Line 43:
<math> sin(\theta) = \frac{1}{j2}(e^{j\theta} - e^{-j\theta})\!</math><br>
<math> sin(\theta) = \frac{1}{j2}(e^{j\theta} - e^{-j\theta})\!</math><br>
The derivation should be as follows.<br><br>
The derivation should be as follows.<br><br>
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br><br>'''
Recall <math> w_0 = 2\pi f_0\!</math>, so expanding we have, <math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, <br>
so expanding we have, <br>
Also recall <math> sin(\theta) = \frac{1}{j2}(e^{j\theta} - e^{-j\theta})\!</math>, so we can convert to exponentials.<br>
<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> sin(\theta) = \frac{1}{j2}(e^{j\theta} - e^{-j\theta})\!</math>, <br>
so we can convert to exponentials.<br>
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Now integrating gives us,<br>
Now integrating gives us,<br>
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)- \frac{1}{j2}G(f+f_0)\!</math><br>
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)- \frac{1}{j2}G(f+f_0)\!</math><br>
So we now have the identity,
So we now have the identity,<br>
<math>\mathcal{F}[sin(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)- G(f+f_0)]\!</math><br>
<math>\mathcal{F}[sin(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)- G(f+f_0)]\!</math><br>
Or rather <br>
Your answer looks correct, but I don't know how you got if from the equation above it. Your operator between the <math> G \!</math> terms changed from a <math> + \!</math> to a <math> - \!</math>
<math>\mathcal{F}[sin(w_0t)g(t)] = \frac{1}{2}j[G(f+f_0)- G(f-f_0)]\!</math>

Latest revision as of 19:58, 20 October 2009

Max Woesner

Back to my Home Page

Homework #5 - Reveiew a Fourier Transform Property

Joshua Sarris derived the following Fourier Transform Property here for Homework #4.

Find


Recall ,

so expanding we have,


Also recall ,

so we can convert to exponentials.


Now integrating gives us,



So we now have the identity,

orr rather


My Review

Josh, Josh, it appears that you copied my code and forgot to change some necessary elements so it is works for your equation, such as the cosines on lines 4, 11, and 13.
Also, you forgot a in the second term of the second equation on line 9, and your identity for has a sign error. It should be:

The derivation should be as follows.

Find

Recall ,
so expanding we have,

Also recall ,
so we can convert to exponentials.

Now integrating gives us,

So we now have the identity,

Or rather