Table of Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Cdxskier (talk | contribs)
No edit summary
No edit summary
 
Line 6: Line 6:
|-
|-
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given  ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)=f(-x)</math>, then <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>.
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given  ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)=f(-x)</math>, then <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>.
|-
| Linearity ([[Shepherd,Victor|Victor Shepherd]]) || <math>\mathcal{F}\{ax(t) + by(t)\} = a{F}\{x(t)\} + b{F}\{y(t)\}</math>
|}
|}

Latest revision as of 22:45, 1 December 2010

Fourier Transform Properties
Property (contributor) Expanation
Convolution (Ben Henry) If h(x)=(f*g)(x), becomes   h^(ξ)=f^(ξ)g^(ξ).
Scaling (Chris Lau) Given a, which is non-zero and real, and h(x)=f(ax), then h^(ξ)=1|a|f^(ξa). If a=−1, then the time-reversal property states: if h(x)=f(x), then h^(ξ)=f^(ξ).
Linearity (Victor Shepherd) {ax(t)+by(t)}=aF{x(t)}+bF{y(t)}