Code Examples from Class: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(23 intermediate revisions by the same user not shown) | |||
Line 24: | Line 24: | ||
END | END | ||
</nowiki> | </nowiki> | ||
---- | |||
*Factorial 2014 | |||
<nowiki> | |||
_ AREA Add, CODE | |||
ENTRY | |||
; This program takes the factorial of n (in r2) | |||
n EQU 0 | |||
ldr r2,=n ; Load r2 with the number to take the factorial of. | |||
cmp r2,#0 ; Is n=0 | |||
bne check_for_1 | |||
mov r4,#1 | |||
b stop | |||
check_for_1 | |||
cmp r2,#1 | |||
bne initialize_r4 | |||
mov r4,#1 | |||
b stop | |||
initialize_r4 | |||
mov r4,r2 | |||
sub r3,r4,#1 | |||
loop | |||
mul r5,r4,r3 | |||
mov r4,r5 | |||
subs r3,r3,#1 | |||
bne loop | |||
stop b stop | |||
END | |||
</nowiki> | |||
---- | |||
* 64 Bit Add | * 64 Bit Add | ||
VAL1A EQU 0xffffffff | VAL1A EQU 0xffffffff | ||
Line 39: | Line 72: | ||
stop b stop | stop b stop | ||
END | END | ||
---- | |||
* Copy to RAM | * Copy to RAM | ||
Line 57: | Line 92: | ||
list DCW 0x1111, 0x2222, 0x3333, 0x4444, 0x5555 | list DCW 0x1111, 0x2222, 0x3333, 0x4444, 0x5555 | ||
ALIGN | ALIGN | ||
string DCB "This is a test.",0 | string DCB "This is a test.",0 ; This string is not used in the copy to ram program | ||
string2 DCB 'T','h','i' | string2 DCB 'T','h','i' ; This string2 is not used in the copy to ram program | ||
ALIGN | ALIGN | ||
AREA Thedata, DATA, NOINIT, READWRITE | AREA Thedata, DATA, NOINIT, READWRITE | ||
Line 64: | Line 99: | ||
END | END | ||
---- | |||
* Subroutine Example1 | * Subroutine Example1 | ||
Line 70: | Line 107: | ||
; saving registers on the stack, etc. | ; saving registers on the stack, etc. | ||
; Rob Frohne, | ; Rob Frohne, 11/3/2013 | ||
stack_start EQU 0x40001000 | stack_start EQU 0x40001000 | ||
Line 80: | Line 117: | ||
ldr sp, =stack_start ; Tell where we will place the stack. | ldr sp, =stack_start ; Tell where we will place the stack. | ||
; (It goes down (lower addresses from here.) | ; (It goes down (lower addresses from here.) | ||
mov r1, #1 ; Store some numebers in some registers | mov r1, #1 ; Store some numebers in some registers | ||
mov r2, #2 | mov r2, #2 | ||
mov r3, #3 | mov r3, #3 | ||
Line 91: | Line 128: | ||
subroutine | subroutine | ||
stmfd sp!, {r1-r2,lr} ; save used registers and the link register (r14) | stmfd sp!, {r1-r2,lr} ; save used registers and the link register (r14) | ||
mov r1,#0xffffffff ; mess up the registers | mov r1,#0xffffffff ; mess up the registers | ||
mov r2, r1 | mov r2, r1 | ||
ldmfd sp!, {r1,r2,pc} ; pop the stack and return | ldmfd sp!, {r1,r2,pc} ; pop the stack and return | ||
END | END | ||
---- | |||
* Minimum of a Signed Number | * Minimum of a Signed Number | ||
<nowiki> | <nowiki> | ||
; This program finds the minimum of a list of constant words in signed format | ; This program finds the minimum of a list of constant words in signed format | ||
; The | ; The result is in r3 at the end of the routine. | ||
; Rob Frohne 10/30/2013 | ; Rob Frohne 10/30/2013 | ||
Line 106: | Line 145: | ||
ENTRY | ENTRY | ||
ldr r0,=end | ldr r0,=end ; load the end address of the code & initialize it as the pointer. | ||
ldr r2,=begin ; load the | ldr r2,=begin ; load the beginning address of the code. | ||
mov r3,#0x7fffffff ; Initialize r3 as the most positive number. | mov r3,#0x7fffffff ; Initialize r3 as the most positive number. | ||
loop | loop | ||
ldr r6,[r2],#4 ; load the next data into r6 and post increment r2 for the next data. | ldr r6,[r2],#4 ; load the next data into r6 and post increment r2 for the next data. | ||
cmp r6,r3 ; Find out if r6 > r3. result from r6-r3 like subs r7,r6,r3 without r6 necessary. | cmp r6,r3 ; Find out if r6 > r3. result from r6-r3 like subs r7,r6,r3 without r6 necessary. | ||
bgt no_update ; If it is no update. | bgt no_update ; If it is no update. | ||
mov r3,r6 | mov r3,r6 ; update if r6 is lower than r3. | ||
no_update | no_update | ||
cmp r0,r2 | cmp r0,r2 ; are we at the end yet | ||
bne loop | bne loop ; if r7 != 0 then keep looping | ||
stop b stop | stop b stop | ||
Line 125: | Line 164: | ||
end | end | ||
END | END | ||
</nowiki> | |||
---- | |||
* Compare Two Null Terminated Strings | |||
<nowiki> | |||
; Subroutine to compare two null terminated ASCII strings. | |||
; The address where the two strings start are in r0 and r1 | |||
; The return is in r0, 1 for match and 0 for don't match. | |||
; If they don't match, r1 gives the number of the first | |||
; character that didn't match, starting with 0. | |||
; r2 and r3 are not protected. | |||
; Rob Frohne 11/6/2013 | |||
stack_start EQU 0x40001000 | |||
AREA String_Compare, CODE | |||
ENTRY | |||
Start | |||
ldr sp, =stack_start ; Tell where we will place the stack. | |||
; (It goes down (lower addresses from here.) | |||
ldr r0, =string1 | |||
ldr r1, =string2 | |||
bl compare_strings | |||
stop b stop | |||
compare_strings | |||
stmfd sp!, {r2,r4,r5,lr} ; save used registers and the link register (r14) | |||
mov r2, #0 ; Initialize the counter for the first position. | |||
loop | |||
ldrb r4,[r0],#1 | |||
ldrb r5,[r1],#1 | |||
cmp r5,r4 | |||
bne do_not_match | |||
cmp r4, #0 ; check for end of string. | |||
beq match | |||
add r2, #1 | |||
b loop | |||
do_not_match | |||
mov r0, #0 ; don't match | |||
b finish | |||
match | |||
mov r0, #1 | |||
finish | |||
mov r1,r2 ; Move the count into the result register. | |||
ldmfd sp!, {r2,r4,r5,pc} ; pop the stack and return | |||
string1 | |||
DCB "This is the first string.",00 ; For testing purposes. | |||
ALIGN | |||
string2 | |||
DCB "This is the first string.",00 | |||
ALIGN | |||
END | |||
</nowiki> | |||
---- | |||
* BCD Add | |||
<nowiki> | |||
; Subroutine to add two BCD numbers in 32 bit form with each nibble | |||
; representing a digit. | |||
; locals: r8 for digit counter, single digit mask 0xf, r5 & r6 for masked addends, | |||
; working BCD_carry, r7 | |||
; working result in r4 | |||
; the summed digits go in r3 | |||
; inputs: r0+r1 | |||
; outputs: r0 result and r1 carry | |||
; only r4-r8 are saved. | |||
; Rob Frohne 11/12/13 | |||
stack_start EQU 0x40001000 | |||
AREA ADD_BCD, CODE | |||
ENTRY | |||
Start | |||
ldr sp, =stack_start ; Tell where we will place the stack. | |||
; (It goes down (lower addresses from here.) | |||
ldr r0, =0x12345678 ; The two numbers to add. | |||
ldr r1, =0x87654321 | |||
bl bcd_add | |||
stop b stop | |||
bcd_add ; The subroutine | |||
stmfd sp!, {r4-r8,lr} | |||
mov r8, #8 ; Set the counter to move through the eight digits | |||
mov r7, #0 ; Set the carry to zero to start with | |||
mov r3, #0 ; This is where the resulting digits of the sum are stored. | |||
loop | |||
and r5, r0, #0xf ; mask for the rightmost digit. | |||
and r6, r1, #0xf | |||
add r4, r5, r7 ; add carry | |||
add r4, r4, r6 ; r4=r5+r6 | |||
subs r4, r4, #10 ; Subtract 10 (base 10) to see if there is a carry. | |||
bpl carry | |||
mov r7, #0 ; set carry to zero | |||
add r4, r4, #10 ; Add the 10 back in as there was no carry needed. | |||
b roll_to_next_digit | |||
carry | |||
mov r7, #1 ; set the carry | |||
roll_to_next_digit | |||
orr r3, r3, r4 ; Add these digits into the sum. | |||
ror r0, #4 | |||
ror r1, #4 | |||
ror r3, #4 | |||
subs r8, r8, #1 ; Decrement the digit counter | |||
bne loop ; If it isn't zero do the next digit. | |||
mov r0, r3 ; Set the output registers. r0 is result. r1 is carry. | |||
mov r1, r7 | |||
ldmfd sp!, {r4-r8,pc} | |||
END | |||
</nowiki> | |||
---- | |||
*Bubble Sort | |||
<nowiki> | |||
; This is a program to bubble sort a list. | |||
; Rob Frohne and the CPTR 215 class | |||
stack_start EQU 0x40001000 | |||
length EQU (end_of_list - begin) | |||
end_ram EQU (datastart + length) | |||
; EQU statements must be at the beginning of the program. | |||
AREA Subroutine_Example, CODE | |||
ENTRY | |||
; Copy list to RAM | |||
ldr sp, =stack_start | |||
LDR R9, =begin | |||
ldr R7, =end_of_list | |||
ldr r6, =datastart | |||
loop | |||
ldr r8,[r9],#4 | |||
str r8,[r6],#4 | |||
cmp r9,r7 | |||
bne loop | |||
; End copy to RAM | |||
start_sort | |||
ldr r5,=(end_ram - 4) | |||
loop_sort_outer ; r2 is our counter, it goes from 1 to item_count | |||
mov r1, #1 ; has_changed = false (0 is true) | |||
ldr r2,=datastart ; start of data in ram goes into r2 | |||
loop_sort_inner ; | |||
ldr r3,[r2],#4 | |||
ldr r4,[r2],#0 | |||
cmp r3,r4 | |||
blhi subroutine_swap ; swaps the last two and sets has_changed | |||
cmp r2,r5 | |||
bne loop_sort_inner | |||
sub r5,r5,#4 ; the last item is in order, so we don't need to check it again. | |||
cmp r1,#1 | |||
bne loop_sort_outer | |||
stop b stop | |||
subroutine_swap ; swaps the contents of the addresses held in | |||
; r2 and r2 -4 (the previous address) | |||
; has_changed is r1 and it sets it to 0 (true) | |||
stmfd sp!, {r0,r2-r4,lr} | |||
mov r1,#0 ; setting the has_changed to true. | |||
ldr r0,[r2],#-4 ; swapping data | |||
ldr r3,[r2] | |||
str r0,[r2],#4 | |||
str r3,[r2] | |||
ldmfd sp!, {r0,r2-r4,pc} | |||
ALIGN | |||
begin | |||
DCD 0x8fffffff, 0x55555555, 0x44444444, 0x77777777, 0xffffffff | |||
end_of_list | |||
AREA Thedata, DATA, NOINIT, READWRITE | |||
datastart SPACE 20 | |||
END | |||
</nowiki> | |||
---- | |||
*GPIO Example | |||
<nowiki> | |||
;--------------------------------------------------------------------------- | |||
; | |||
; Programmer : Larry Aamodt | |||
; | |||
; File name : shell_2148.s | |||
; Class : CPTR-215 | |||
; Language : ARM assembly | |||
; Assembler : Keil | |||
; Target MCU : NXP LPC-2148 on Embedded Artists board | |||
; Date Written: 11/30/09 | |||
; change history: 11/30/09 LDA Updated with hardware start-up | |||
; 12/03/09 LDA PWM register definitions added | |||
; Description : | |||
; | |||
; Inputs : | |||
; | |||
; Outputs : | |||
; | |||
; Special : | |||
; requirements | |||
; | |||
; | |||
; NOTES: | |||
; | |||
; | |||
; | |||
;--------------------------------------------------------------------------- | |||
; Put application program definitions (i.e. equates) here: | |||
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs | |||
Mode_USR EQU 0x10 | |||
Mode_FIQ EQU 0x11 | |||
Mode_IRQ EQU 0x12 | |||
Mode_SVC EQU 0x13 | |||
Mode_ABT EQU 0x17 | |||
Mode_UND EQU 0x1B | |||
Mode_SYS EQU 0x1F | |||
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled | |||
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled | |||
; Memory addresses for standard GPIO definitions | |||
IO0PIN EQU 0xE0028000 | |||
IO0SET EQU 0xE0028004 | |||
IO0DIR EQU 0xE0028008 | |||
IO0CLR EQU 0xE002800C | |||
; Memory addresses for Pulse Width Modulation (PWM) | |||
PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register | |||
PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register | |||
PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register | |||
PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) | |||
PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) | |||
PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) | |||
PWM_PCR EQU 0xE001404C ; PWM_CR Control Register | |||
PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register | |||
PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 | |||
PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 | |||
; Stack size definitions | |||
UND_Stack_Size EQU 0x00000000 | |||
SVC_Stack_Size EQU 0x00000008 | |||
ABT_Stack_Size EQU 0x00000000 | |||
FIQ_Stack_Size EQU 0x00000000 | |||
IRQ_Stack_Size EQU 0x00000080 | |||
USR_Stack_Size EQU 0x00000400 | |||
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ | |||
FIQ_Stack_Size + IRQ_Stack_Size) | |||
AREA STACK, NOINIT, READWRITE, ALIGN=3 | |||
Stack_Mem SPACE USR_Stack_Size | |||
__initial_sp SPACE ISR_Stack_Size | |||
Stack_Top | |||
; Area Definition and Entry Point | |||
; Startup Code must be linked first at Address at which it expects to run. | |||
AREA RESET, CODE, READONLY | |||
ARM | |||
; Exception Vectors | |||
; Mapped to Address 0. | |||
; Absolute addressing mode must be used. | |||
; Dummy Handlers are implemented as infinite loops which can be modified. | |||
Vectors LDR PC, Reset_Addr | |||
LDR PC, Undef_Addr | |||
LDR PC, SWI_Addr | |||
LDR PC, PAbt_Addr | |||
LDR PC, DAbt_Addr | |||
NOP ; Reserved Vector | |||
; LDR PC, IRQ_Addr | |||
LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr | |||
LDR PC, FIQ_Addr | |||
Reset_Addr DCD Reset_Handler | |||
Undef_Addr DCD Undef_Handler | |||
SWI_Addr DCD SWI_Handler | |||
PAbt_Addr DCD PAbt_Handler | |||
DAbt_Addr DCD DAbt_Handler | |||
DCD 0 ; Reserved Address | |||
IRQ_Addr DCD IRQ_Handler | |||
FIQ_Addr DCD FIQ_Handler | |||
Undef_Handler B Undef_Handler | |||
SWI_Handler B SWI_Handler | |||
PAbt_Handler B PAbt_Handler | |||
DAbt_Handler B DAbt_Handler | |||
IRQ_Handler B IRQ_Handler | |||
FIQ_Handler B FIQ_Handler | |||
; Reset Handler | |||
EXPORT Reset_Handler | |||
Reset_Handler | |||
; Setup Stack for each mode | |||
LDR R0, =Stack_Top | |||
; Enter Undefined Instruction Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #UND_Stack_Size | |||
; Enter Abort Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #ABT_Stack_Size | |||
; Enter FIQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #FIQ_Stack_Size | |||
; Enter IRQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #IRQ_Stack_Size | |||
; Enter Supervisor Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #SVC_Stack_Size | |||
; Enter User Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_USR | |||
MOV SP, R0 | |||
SUB SL, SP, #USR_Stack_Size | |||
; User program code goes here | |||
main | |||
ldr r1, =PINSEL0 | |||
mov r0, #0 ; set P0.0 to P0.15 as GPIO | |||
str r0,[r1] | |||
ldr r1, =IO0DIR ; Get ready to set direction of data | |||
ldr r0, =0xffff ; output | |||
str r0, [r1] ; set the direction | |||
ldr r1, =IO0PIN ; load the address of the port0 | |||
mov r0, #0 | |||
next | |||
str r0, [r1] | |||
add r0, r0, #1 | |||
ldr r2, =0x200 | |||
delay | |||
subs r2,r2,#1 | |||
bne delay | |||
b next | |||
AREA Thedata, DATA, READWRITE | |||
ALIGN | |||
datastart EQU 0x40000004 | |||
SPACE 20 | |||
;FILL 20, 0xff ; Why is this stored at 0x50 instead of 0x58? | |||
; Or maybe a better question: How do I set data at | |||
; a specific memory location? | |||
END | |||
</nowiki> | |||
---- | |||
* LCD Example | |||
<nowiki> | |||
;--------------------------------------------------------------------------- | |||
; | |||
; Programmer : Larry Aamodt | |||
; | |||
; File name : shell_2148.s | |||
; Class : CPTR-215 | |||
; Language : ARM assembly | |||
; Assembler : Keil | |||
; Target MCU : NXP LPC-2148 on Embedded Artists board | |||
; Date Written: 11/30/09 | |||
; change history: 11/30/09 LDA Updated with hardware start-up | |||
; 12/03/09 LDA PWM register definitions added | |||
; Description : | |||
; | |||
; Inputs : | |||
; | |||
; Outputs : | |||
; | |||
; Special : | |||
; requirements | |||
; | |||
; | |||
; NOTES: | |||
; | |||
; | |||
; | |||
;--------------------------------------------------------------------------- | |||
; Put application program definitions (i.e. equates) here: | |||
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs | |||
Mode_USR EQU 0x10 | |||
Mode_FIQ EQU 0x11 | |||
Mode_IRQ EQU 0x12 | |||
Mode_SVC EQU 0x13 | |||
Mode_ABT EQU 0x17 | |||
Mode_UND EQU 0x1B | |||
Mode_SYS EQU 0x1F | |||
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled | |||
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled | |||
; Memory addresses for standard GPIO definitions | |||
IO0PIN EQU 0xE0028000 | |||
IO0SET EQU 0xE0028004 | |||
IO0DIR EQU 0xE0028008 | |||
IO0CLR EQU 0xE002800C | |||
; Memory addresses for Pulse Width Modulation (PWM) | |||
PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register | |||
PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register | |||
PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register | |||
PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) | |||
PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) | |||
PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) | |||
PWM_PCR EQU 0xE001404C ; PWM_CR Control Register | |||
PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register | |||
PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 | |||
PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 | |||
; Stack size definitions | |||
UND_Stack_Size EQU 0x00000000 | |||
SVC_Stack_Size EQU 0x00000008 | |||
ABT_Stack_Size EQU 0x00000000 | |||
FIQ_Stack_Size EQU 0x00000000 | |||
IRQ_Stack_Size EQU 0x00000080 | |||
USR_Stack_Size EQU 0x00000400 | |||
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ | |||
FIQ_Stack_Size + IRQ_Stack_Size) | |||
AREA STACK, NOINIT, READWRITE, ALIGN=3 | |||
Stack_Mem SPACE USR_Stack_Size | |||
__initial_sp SPACE ISR_Stack_Size | |||
Stack_Top | |||
; Area Definition and Entry Point | |||
; Startup Code must be linked first at Address at which it expects to run. | |||
AREA RESET, CODE, READONLY | |||
ARM | |||
; Exception Vectors | |||
; Mapped to Address 0. | |||
; Absolute addressing mode must be used. | |||
; Dummy Handlers are implemented as infinite loops which can be modified. | |||
Vectors LDR PC, Reset_Addr | |||
LDR PC, Undef_Addr | |||
LDR PC, SWI_Addr | |||
LDR PC, PAbt_Addr | |||
LDR PC, DAbt_Addr | |||
NOP ; Reserved Vector | |||
; LDR PC, IRQ_Addr | |||
LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr | |||
LDR PC, FIQ_Addr | |||
Reset_Addr DCD Reset_Handler | |||
Undef_Addr DCD Undef_Handler | |||
SWI_Addr DCD SWI_Handler | |||
PAbt_Addr DCD PAbt_Handler | |||
DAbt_Addr DCD DAbt_Handler | |||
DCD 0 ; Reserved Address | |||
IRQ_Addr DCD IRQ_Handler | |||
FIQ_Addr DCD FIQ_Handler | |||
Undef_Handler B Undef_Handler | |||
SWI_Handler B SWI_Handler | |||
PAbt_Handler B PAbt_Handler | |||
DAbt_Handler B DAbt_Handler | |||
IRQ_Handler B IRQ_Handler | |||
FIQ_Handler B FIQ_Handler | |||
; Reset Handler | |||
EXPORT Reset_Handler | |||
Reset_Handler | |||
; Setup Stack for each mode | |||
LDR R0, =Stack_Top | |||
; Enter Undefined Instruction Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #UND_Stack_Size | |||
; Enter Abort Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #ABT_Stack_Size | |||
; Enter FIQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #FIQ_Stack_Size | |||
; Enter IRQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #IRQ_Stack_Size | |||
; Enter Supervisor Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #SVC_Stack_Size | |||
; Enter User Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_USR | |||
MOV SP, R0 | |||
SUB SL, SP, #USR_Stack_Size | |||
; User program code goes here | |||
main | |||
bl lcdReset ; set up the lcd | |||
bl lcdClear | |||
mov r0, #32 | |||
loop | |||
bl lcdWRdata ; write to the LCD | |||
add r0, r0, #1 ; increment the data | |||
mov r9, r0 | |||
ldr r0, =1000000 | |||
bl delay | |||
mov r0, r9 | |||
b loop | |||
; User data area definition follows | |||
AREA appdata, DATA, NOINIT, READWRITE | |||
;----------------------------------------------------------------------------- | |||
; Copyright (C) 2012 .... | |||
; | |||
; Programmer : Larry Aamodt | |||
; | |||
; File name : lcd_routines.asm | |||
; Language : ARM assembly | |||
; Assembler ; Keil | |||
; Target MCU : NXP LPC2148 on Embedded Artists education board | |||
; Date : 12/05/12 LDA lcd_routines.asm. debugged | |||
; | |||
; Description : LCD display routines | |||
; Copy this code to your own program | |||
; | |||
; Procedures you can call are: | |||
; lcdReset must be called first. no parameters. | |||
; lcdClear use to clear the display & home the cursor | |||
; no parameters are required. | |||
; lcdWRdata use to write one character on the display | |||
; place an ASCII char in r0 before calling. | |||
; The cursor will advance. | |||
; lcdCursorAt use to move the cursor. Two parameters | |||
; r0 = row (1 or 2) | |||
; r1 = column to move cursor to (0-15) | |||
; | |||
; Example use of the LCD routines: | |||
; bl lcdReset ; do this once at the top of your program | |||
; | |||
; mov r0,#31h ; place the ascii code for number one in r0 | |||
; bl lcdWRdata ; display the character '1' on LCD display | |||
; | |||
; bl lcdClear ; clear the display | |||
; | |||
; mov r0,#1 ; select LCD row 1 | |||
; mov r1,#4 ; select LCD column 4 | |||
; bl lcdCursorAt ; move the cursor | |||
; | |||
; | |||
; NOTE: All registers are saved by these routines, i.e. upon return | |||
; from the subroutine all registers, except flags, have the | |||
; same value in them as before the subroutine was called (this | |||
; breaks with the ARM convention for subroutines but is done | |||
; to make it easier for you). | |||
; | |||
;----------------------------------------------------------------------------- | |||
AREA lcdroutines,CODE,READONLY | |||
EXPORT lcdReset | |||
EXPORT lcdClear | |||
EXPORT lcdWRdata | |||
EXPORT lcdCursorAt | |||
EXPORT delay | |||
; ----------------------------------------------------------------------------- | |||
; LCD Procedures follow. | |||
;------------------------------------------------------------------------------ | |||
; ***** LCD equates ****** | |||
;IO0PIN EQU 0xE0028000 | |||
;IO0SET EQU 0xE0028004 | |||
;IO0DIR EQU 0xE0028008 | |||
;IO0CLR EQU 0xE002800C | |||
IO1PIN EQU 0xE0028010 | |||
IO1SET EQU 0xE0028014 | |||
IO1DIR EQU 0xE0028018 | |||
IO1CLR EQU 0xE002801C | |||
T0_TCR_ADDR EQU 0xE0004004 | |||
T0_PR_ADDR EQU 0xE000400C | |||
T0_MCR_ADDR EQU 0xE0004014 | |||
T0_MR0_ADDR EQU 0xE0004018 | |||
; ----------------------------------------------------------------------------- | |||
; Procedure lcdReset Must be called before writing to the LCD | |||
; No parameters required | |||
; ----------------------------------------------------------------------------- | |||
lcdReset STMFD SP!,{LR,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} | |||
LDR r1,=T0_PR_ADDR ; Prescale register | |||
MOV r2,#2 ; prescale count value | |||
STR r2,[r1] ; Prescaler will divide by 3 | |||
LDR r1,=T0_MCR_ADDR ; Match control register | |||
MOV r2,#0x6 ; bit 2 = one | |||
STR r2,[r1] ; stop counter when match reached | |||
LDR r5,=IO0CLR | |||
LDR r6,=IO0SET | |||
LDR r7,=IO1CLR | |||
LDR r8,=IO1SET | |||
LDR r0,=35000 | |||
BL delay ; delay 35ms | |||
LDR r0,=IO0DIR | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=0x40408000 ; one's for pins to be set for output | |||
ORR r4,r4,r3 ; bits 22 & 30 to be outputs | |||
STR r4,[r0] ; set lcd port bits to output | |||
LDR r3,=0x00400000 ; | |||
STR r3,[r5] ; write 0 to LCD R/W signal | |||
LDR r3,=0x40008000 | |||
STR r3,[r6] ; turn on backlight - write 1 to P0.30 | |||
LDR r0,=IO1DIR | |||
LDR r4,[r0] ; read current Port 1 direction bits | |||
LDR r3,=0x03FF0000 ; one's for lcd pins - set for output | |||
ORR r4,r4,r3 ; bits 16 to 25 to be outputs | |||
STR r4,[r0] ; set lcd port direction bits to output | |||
STR r3,[r7] ; clear the LCD data & control bits | |||
LDR r9,=0x02000000 ; bit pattern to turn on/off E | |||
LDR r2,=0x00380000 ; function: 2 lines, 5x7 dots | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
MOV r0,#40 | |||
BL delay ; wait 40 microseconds | |||
LDR r2,=0x000E0000 ; function: display on, cursor on | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
MOV r0,#40 | |||
BL delay ; wait 40 microseconds | |||
LDR r2,=0x00010000 ; lcd function: clear display | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
MOV r0,#1600 | |||
BL delay ; delay for 1600 microseconds | |||
LDR r2,=0x00030000 ; lcd function: set entry mode | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
end_lcdReset LDMFD SP!,{PC,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} | |||
;------------------------------------------------------------------------------ | |||
; Procedure pulse_e uses r0. Not interuptable (r14 not saved) | |||
; assumes r9 has 0x02000000 in it | |||
; assumes r7 has IO1CLR address in it | |||
; assumes r8 has IO1SET address in it | |||
;------------------------------------------------------------------------------ | |||
pulse_e MOV r0,#4 | |||
STR r9,[r8] ; assert E | |||
ploop1 SUBS r0,r0,#1 ; delay 600ns or so | |||
BNE ploop1 | |||
STR r9,[r7] ; de-assert E | |||
MOV r0,#8 | |||
ploop2 SUBS r0,r0,#1 ; delay 1100ns or so | |||
BNE ploop2 | |||
end_pulse_e BX LR | |||
; ----------------------------------------------------------------------------- | |||
; Procedure lcdClear Clears the LCD and positions cursor to line1, left col | |||
; no parameters required | |||
; ----------------------------------------------------------------------------- | |||
lcdClear STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} | |||
LDR r9,=0x02000000 ; bit pattern to turn on/off E | |||
LDR r3,=0x03FF0000 ; one's for pins used for lcd | |||
LDR r7,=IO1CLR | |||
LDR r8,=IO1SET | |||
LDR r2,=0x00010000 ; lcd function: clear display | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
MOV r0,#1600 | |||
BL delay | |||
end_lcdClear LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} | |||
; ----------------------------------------------------------------------------- | |||
; Procedure lcdCursorAt | |||
; r0 assumed to contain the row# (1 or 2) | |||
; r1 assumed to contain col#(0-15) | |||
; No cursor movement if invalid row or col # is found | |||
; ----------------------------------------------------------------------------- | |||
lcdCursorAt STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} | |||
CMP r1,#15 ; check column & row range | |||
BHI end_lcdCursorAt | |||
CMP r0,#0 | |||
BEQ end_lcdCursorAt | |||
CMP r0,#2 | |||
BHI end_lcdCursorAt | |||
ADDEQ r1,r1,#0x40 ; build the cursor address | |||
LDR r0,=0x00800000 | |||
ORR r2,r0,r1,LSL #16 ; r2 now has the address | |||
LDR r3,=0x03FF0000 ; one's for pins used for lcd | |||
LDR r7,=IO1CLR | |||
LDR r8,=IO1SET | |||
LDR r9,=0x02000000 ; bit pattern to turn on/off E | |||
STR r2,[r8] ; set lcd function bits | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
MOV r0,#40 | |||
BL delay | |||
end_lcdCursorAt LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} | |||
; ----------------------------------------------------------------------------- | |||
; Procedure lcdWRdata Writes data (an ASCII character) to the | |||
; current cursor position on the LCD | |||
; r0 is assumed to contain the character to send | |||
; ----------------------------------------------------------------------------- | |||
lcdWRdata STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} | |||
LDR r9,=0x02000000 ; bit pattern to turn on/off E | |||
LDR r3,=0x03FF0000 ; one's for pins used for lcd | |||
LDR r7,=IO1CLR | |||
LDR r8,=IO1SET | |||
AND r0,r0,#0xFF ; make sure only 8 bits are non-zero | |||
ORR r0,r0,#0x100 ; set bit that indicates writing | |||
LSL r0,r0,#16 | |||
STR r0,[r8] ; write data | |||
BL pulse_e | |||
STR r3,[r7] ; clear lcd bits | |||
end_lcdWRData LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} | |||
; ----------------------------------------------------------------------------- | |||
; Procedure delay microsecond delay using timer 0 | |||
; (12Mhz clock & VPB divide by 4 assumed) | |||
; reg R0 must contain a delay value in uS | |||
; Not interruptable (r14 not saved) | |||
; assumes lcdReset has been called prior to delay | |||
; r0, r1 not preserved | |||
; ----------------------------------------------------------------------------- | |||
delay LDR r1,=T0_MR0_ADDR ; Match register zero | |||
STR r0,[r1] ; load match count per R0 | |||
; ldr r0,=0x8000 | |||
; str r0,[r5] ; turn on p0.15 led | |||
LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register | |||
MOV r0,#2 ; bit 1 = one | |||
STR r0,[r1] ; Clear counter & prescaler | |||
MOV r0,#0 | |||
STR r0,[r1] | |||
MOV r0,#1 ; bit 0 = one | |||
STR r0,[r1] ; Turn on counter | |||
dloop LDR r0,[r1] ; Read TCR register | |||
ANDS r0,r0,#1 | |||
BNE dloop | |||
; ldr r0,=0x8000 | |||
; str r0,[r6] ; turn off p0.15 led | |||
end_delay BX LR ; Return | |||
END | |||
</nowiki> | |||
* PWM Example for running the servos on the robots | |||
<nowiki> | |||
;--------------------------------------------------------------------------- | |||
; | |||
; Programmer : Larry Aamodt | |||
; | |||
; File name : shell_2148.s | |||
; Class : CPTR-215 | |||
; Language : ARM assembly | |||
; Assembler : Keil | |||
; Target MCU : NXP LPC-2148 on Embedded Artists board | |||
; Date Written: 11/30/09 | |||
; change history: 11/30/09 LDA Updated with hardware start-up | |||
; 12/03/09 LDA PWM register definitions added | |||
; Description : | |||
; | |||
; Inputs : | |||
; | |||
; Outputs : | |||
; | |||
; Special : | |||
; requirements | |||
; | |||
; | |||
; NOTES: | |||
; | |||
; | |||
; | |||
;--------------------------------------------------------------------------- | |||
; Put application program definitions (i.e. equates) here: | |||
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs | |||
Mode_USR EQU 0x10 | |||
Mode_FIQ EQU 0x11 | |||
Mode_IRQ EQU 0x12 | |||
Mode_SVC EQU 0x13 | |||
Mode_ABT EQU 0x17 | |||
Mode_UND EQU 0x1B | |||
Mode_SYS EQU 0x1F | |||
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled | |||
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled | |||
; Memory addresses for standard GPIO definitions | |||
IO0PIN EQU 0xE0028000 | |||
IO0SET EQU 0xE0028004 | |||
IO0DIR EQU 0xE0028008 | |||
IO0CLR EQU 0xE002800C | |||
; Memory addresses for Timer/Counter | |||
T1TCR EQU 0xE0008004 | |||
T1CTCR EQU 0xE0008070 | |||
T1PR EQU 0xE000800C | |||
T1MCR EQU 0xE0008014 | |||
T1EMR EQU 0xE000803C | |||
; Memory addresses for Pulse Width Modulation (PWM) | |||
PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register | |||
PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register | |||
PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register | |||
PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) | |||
PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) | |||
PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) | |||
PWM_PCR EQU 0xE001404C ; PWM_CR Control Register | |||
PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register | |||
PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 | |||
PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 | |||
; Stack size definitions | |||
UND_Stack_Size EQU 0x00000000 | |||
SVC_Stack_Size EQU 0x00000008 | |||
ABT_Stack_Size EQU 0x00000000 | |||
FIQ_Stack_Size EQU 0x00000000 | |||
IRQ_Stack_Size EQU 0x00000080 | |||
USR_Stack_Size EQU 0x00000400 | |||
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ | |||
FIQ_Stack_Size + IRQ_Stack_Size) | |||
AREA STACK, NOINIT, READWRITE, ALIGN=3 | |||
Stack_Mem SPACE USR_Stack_Size | |||
__initial_sp SPACE ISR_Stack_Size | |||
Stack_Top | |||
; Area Definition and Entry Point | |||
; Startup Code must be linked first at Address at which it expects to run. | |||
AREA RESET, CODE, READONLY | |||
ARM | |||
; Exception Vectors | |||
; Mapped to Address 0. | |||
; Absolute addressing mode must be used. | |||
; Dummy Handlers are implemented as infinite loops which can be modified. | |||
Vectors LDR PC, Reset_Addr | |||
LDR PC, Undef_Addr | |||
LDR PC, SWI_Addr | |||
LDR PC, PAbt_Addr | |||
LDR PC, DAbt_Addr | |||
NOP ; Reserved Vector | |||
; LDR PC, IRQ_Addr | |||
LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr | |||
LDR PC, FIQ_Addr | |||
Reset_Addr DCD Reset_Handler | |||
Undef_Addr DCD Undef_Handler | |||
SWI_Addr DCD SWI_Handler | |||
PAbt_Addr DCD PAbt_Handler | |||
DAbt_Addr DCD DAbt_Handler | |||
DCD 0 ; Reserved Address | |||
IRQ_Addr DCD IRQ_Handler | |||
FIQ_Addr DCD FIQ_Handler | |||
Undef_Handler B Undef_Handler | |||
SWI_Handler B SWI_Handler | |||
PAbt_Handler B PAbt_Handler | |||
DAbt_Handler B DAbt_Handler | |||
IRQ_Handler B IRQ_Handler | |||
FIQ_Handler B FIQ_Handler | |||
; Reset Handler | |||
EXPORT Reset_Handler | |||
Reset_Handler | |||
; Setup Stack for each mode | |||
LDR R0, =Stack_Top | |||
; Enter Undefined Instruction Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #UND_Stack_Size | |||
; Enter Abort Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #ABT_Stack_Size | |||
; Enter FIQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #FIQ_Stack_Size | |||
; Enter IRQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #IRQ_Stack_Size | |||
; Enter Supervisor Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #SVC_Stack_Size | |||
; Enter User Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_USR | |||
MOV SP, R0 | |||
SUB SL, SP, #USR_Stack_Size | |||
; User program code goes here | |||
main | |||
BL pwm_init | |||
mov r0, #3 | |||
ldr r1, =1600 | |||
mov r2, r1 | |||
bl pwm_update | |||
stop b stop | |||
;***************************************************************************** | |||
; Pulse width modulator initialization routine. | |||
; pulse period = 20ms; initial pulse length = 1.5ms | |||
; (values shown are for controlling model plane servos) | |||
; Inputs: none | |||
; Returned values: none | |||
; Uses registers r0, r1 | |||
; | |||
; Calling method: BL pwm_init | |||
; LDA rev 1.0 12/01/10 | |||
; Rob Frohne rev 1.1 12/3/13 | |||
;***************************************************************************** | |||
; Stepper motor connections on the Board of Education are from page 24 of the board | |||
; Users Guide. A stepper motor operation is explained at: | |||
; http://www.haydonkerk.com/Resources/StepperMotorTheory/tabid/192/Default.aspx | |||
; | |||
; PWM is explained in Chapter 16 (page 253 and following) of the reference manual. | |||
; Note the registers in the reference manual are labeled without the _, i.e. | |||
; PWMPR instead of PWM_PR. | |||
pwm_init STMFD sp!,{r14} ; save link register on the stack | |||
LDR r0,=PWM_PR | |||
LDR r1,=2 ; prescaler = 2 divides PCLK by 3 | |||
STR r1,[r0] ; load prescaler | |||
; PCLK rate is 1 MHZ (1 uSEC period) after division. | |||
LDR r0,=PWM_MCR ; PWMMCR PWM Match Control Register. | |||
; The PWMMCR is used to control if an | |||
; interrupt is generated and if the PWMTC | |||
; is reset when a Match occurs. See page 261 of the manual. | |||
LDR r1,=0x02 ; bit 1 is set, others are zero | |||
STR r1,[r0] ; load PWM_MCR: PWM_TC resets when PWM_TC=PWM_MR0 | |||
LDR r0,=PWM_MR0 | |||
LDR r1,=20000 ; count 20,000 1uSEC intervals = 20 milli secs | |||
STR r1,[r0] ; load match register 0. sets pulse period. Page 261. | |||
LDR r0,=PWM_MR4 | |||
LDR r1,=1500 ; initial pulse width = 1.5 milli secs | |||
STR r1,[r0] ; load match register 4. Page 261 | |||
LDR r0,=PWM_MR6 | |||
LDR r1,=1500 ; initial pulse width | |||
STR r1,[r0] ; load match register 6 | |||
LDR r0,=PWM_LER | |||
LDR r1,=0x51 | |||
STR r1,[r0] ; Enable latch registers 0, 4, & 6 | |||
LDR r0,=PWM_PCR | |||
LDR r1,=0x5000 ; bits 12 & 14 set | |||
STR r1,[r0] ; load PWM_CR: enables PWM4 and PWM6 outputs | |||
LDR r0,=PWM_TCR | |||
LDR r1,=0x09 ; bits 3,1,0 set | |||
STR r1,[r0] ; load PWM_TCR enable PWM counter & prescaler | |||
LDR r0,=PINSEL0 | |||
LDR r1,=0xA0000 ; bits 19 & 17 set. selects output PWM 6 & 4 | |||
STR r1,[r0] ; Enable PWM6 & PWM4 outputs | |||
end_pwm_init LDMFD sp!,{pc} ; Return from subroutine pwm_init | |||
;***************************************************************************** | |||
; Pulse width modulator update routine | |||
; Inputs: r0 = command | |||
; 1 = update PWM channel 4 | |||
; 2 = update PWM channel 6 | |||
; 3 = update both channel 4 and 6 | |||
; r1 = new pulse width (# of microseconds) for PWM channel 4 | |||
; r2 = new pulse width (# of microseconds) for PWM channel 6 | |||
; Returned values: none | |||
; Uses registers r0, r1, r2, r3 | |||
; | |||
; Calling method: first put values in r0, r1, r2 as appropriate | |||
; BL pwm_update | |||
; LDA rev 2.0 12/01/11 | |||
;***************************************************************************** | |||
pwm_update STMFD sp!,{r14} ; r0 specifies channels to update | |||
load_pwm4 CMP r0,#1 ; 1 = load PWM chan 4 | |||
BNE load_pwm6 | |||
LDR r3,=PWM_MR4 | |||
STR r1,[r3] ; load match register 4 | |||
load_pwm6 CMP r0,#2 ; 2 = load PWM chan 6 | |||
BNE load_both | |||
LDR r3,=PWM_MR6 | |||
STR r2,[r3] ; load match register 6 | |||
load_both CMP r0,#3 | |||
BNE pwm_reg_update | |||
LDR r3,=PWM_MR4 | |||
STR r1,[r3] | |||
LDR r3,=PWM_MR6 | |||
STR r2,[r3] | |||
pwm_reg_update CMP r0,#1 ; check for just pwm 4 update | |||
MOVEQ r1,#0x10 | |||
CMP r0,#2 ; check for just pwm 6 update | |||
MOVEQ r1,#0x40 | |||
CMP r0,#3 ; check for pwm 4 & 6 update | |||
MOVEQ r1,#0x50 | |||
LDR r3,=PWM_LER | |||
STR r1,[r3] ; enable latch registers | |||
end_pwm_update LDMFD sp!,{pc} ; Return from subroutine pwm_update | |||
; User data area definition follows | |||
AREA appdata, DATA, NOINIT, READWRITE | |||
END | |||
</nowiki> | |||
* Stepper Motor on the Embedded Artists Board of Education | |||
<nowiki> | |||
;--------------------------------------------------------------------------- | |||
; | |||
; Programmer : Larry Aamodt | |||
; : Modifications for propeller drive: Rob Frohne | |||
; | |||
; File name : shell_2148.s | |||
; Class : CPTR-215 | |||
; Language : ARM assembly | |||
; Assembler : Keil | |||
; Target MCU : NXP LPC-2148 on Embedded Artists board | |||
; Date Written: 11/30/09 | |||
; change history: 11/30/09 LDA Updated with hardware start-up | |||
; 12/03/09 LDA PWM register definitions added | |||
; Description : | |||
; | |||
; Inputs : | |||
; | |||
; Outputs : | |||
; | |||
; Special : | |||
; requirements | |||
; | |||
; | |||
; NOTES: | |||
; | |||
; | |||
; | |||
;--------------------------------------------------------------------------- | |||
; Put application program definitions (i.e. equates) here: | |||
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs | |||
Mode_USR EQU 0x10 | |||
Mode_FIQ EQU 0x11 | |||
Mode_IRQ EQU 0x12 | |||
Mode_SVC EQU 0x13 | |||
Mode_ABT EQU 0x17 | |||
Mode_UND EQU 0x1B | |||
Mode_SYS EQU 0x1F | |||
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled | |||
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled | |||
; Memory addresses for standard GPIO definitions | |||
IO0PIN EQU 0xE0028000 | |||
IO0SET EQU 0xE0028004 | |||
IO0DIR EQU 0xE0028008 | |||
IO0CLR EQU 0xE002800C | |||
; Timer addresses | |||
T0_TCR_ADDR EQU 0xE0004004 | |||
T0_PR_ADDR EQU 0xE000400C | |||
T0_MCR_ADDR EQU 0xE0004014 | |||
T0_MR0_ADDR EQU 0xE0004018 | |||
; Memory addresses for Pulse Width Modulation (PWM) | |||
PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register | |||
PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register | |||
PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register | |||
PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) | |||
PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) | |||
PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) | |||
PWM_PCR EQU 0xE001404C ; PWM_CR Control Register | |||
PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register | |||
PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 | |||
PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 | |||
; Stack size definitions | |||
UND_Stack_Size EQU 0x00000000 | |||
SVC_Stack_Size EQU 0x00000008 | |||
ABT_Stack_Size EQU 0x00000000 | |||
FIQ_Stack_Size EQU 0x00000000 | |||
IRQ_Stack_Size EQU 0x00000080 | |||
USR_Stack_Size EQU 0x00000400 | |||
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ | |||
FIQ_Stack_Size + IRQ_Stack_Size) | |||
AREA STACK, NOINIT, READWRITE, ALIGN=3 | |||
Stack_Mem SPACE USR_Stack_Size | |||
__initial_sp SPACE ISR_Stack_Size | |||
Stack_Top | |||
; Area Definition and Entry Point | |||
; Startup Code must be linked first at Address at which it expects to run. | |||
AREA RESET, CODE, READONLY | |||
ARM | |||
; Exception Vectors | |||
; Mapped to Address 0. | |||
; Absolute addressing mode must be used. | |||
; Dummy Handlers are implemented as infinite loops which can be modified. | |||
Vectors LDR PC, Reset_Addr | |||
LDR PC, Undef_Addr | |||
LDR PC, SWI_Addr | |||
LDR PC, PAbt_Addr | |||
LDR PC, DAbt_Addr | |||
NOP ; Reserved Vector | |||
; LDR PC, IRQ_Addr | |||
LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr | |||
LDR PC, FIQ_Addr | |||
Reset_Addr DCD Reset_Handler | |||
Undef_Addr DCD Undef_Handler | |||
SWI_Addr DCD SWI_Handler | |||
PAbt_Addr DCD PAbt_Handler | |||
DAbt_Addr DCD DAbt_Handler | |||
DCD 0 ; Reserved Address | |||
IRQ_Addr DCD IRQ_Handler | |||
FIQ_Addr DCD FIQ_Handler | |||
Undef_Handler B Undef_Handler | |||
SWI_Handler B SWI_Handler | |||
PAbt_Handler B PAbt_Handler | |||
DAbt_Handler B DAbt_Handler | |||
IRQ_Handler B IRQ_Handler | |||
FIQ_Handler B FIQ_Handler | |||
; Reset Handler | |||
EXPORT Reset_Handler | |||
Reset_Handler | |||
; Setup Stack for each mode | |||
LDR R0, =Stack_Top | |||
; Enter Undefined Instruction Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #UND_Stack_Size | |||
; Enter Abort Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #ABT_Stack_Size | |||
; Enter FIQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #FIQ_Stack_Size | |||
; Enter IRQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #IRQ_Stack_Size | |||
; Enter Supervisor Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #SVC_Stack_Size | |||
; Enter User Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_USR | |||
MOV SP, R0 | |||
SUB SL, SP, #USR_Stack_Size | |||
; User program code goes here | |||
quarter_period EQU 250000 ; uS | |||
main | |||
BL init_propeller | |||
mov r1, #1 ; for handy access | |||
mov r2, #0 ; for handy access | |||
mov r0, r1, LSL #12 ; turn one on | |||
mov r4, r2, LSL #21 ; two still off | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
ldr r0,=quarter_period | |||
bl delay | |||
mov r0, r1, LSL #12 | |||
mov r4, r1, LSL #21 | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
ldr r0,=quarter_period | |||
bl delay | |||
mov r0, r2, LSL #12 ; turn one off | |||
mov r4, r1, LSL #21 ; two still on | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
ldr r0,=quarter_period | |||
bl delay | |||
mov r0, r2, LSL #12 ; turn one off | |||
mov r4, r2, LSL #21 ; turn two off | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
ldr r0,=quarter_period | |||
bl delay | |||
b main | |||
; ----------------------------------------------------------------------------- | |||
; Procedure init_propeller Must be called before to initialize the propeller. | |||
; Set up the counter T0 and GPIO P0.12 and P0.21 for output. | |||
; No parameters required | |||
; ----------------------------------------------------------------------------- | |||
init_propeller STMFD SP!,{LR,r0,r1,r2,r3,r4} | |||
LDR r1,=T0_PR_ADDR ; Prescale register | |||
MOV r2,#2 ; prescale count value | |||
STR r2,[r1] ; Prescaler will divide by 3 (1 uS period) | |||
LDR r1,=T0_MCR_ADDR ; Match control register | |||
MOV r2,#0x4 ; bit 2 = one: Stop on MR0: the TC and PC | |||
; will be stopped and TCR[0] will be set to 0 if | |||
; MR0 matches the TC | |||
STR r2,[r1] ; stop counter when match reached | |||
LDR r0,=IO0DIR | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=2101248 ; one's for pins to be set for output (2^12+2^21 = 2101248) | |||
; 2134016 = 2^12+2^21+2^15 (for debugging LED on P0.15 | |||
ORR r4,r4,r3 | |||
STR r4,[r0] ; set propeller port bits to output without changing others. | |||
LDR r0,=PINSEL0 | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=50331648 ; zero's for pins to be set for output (2^24+2^25 = 50331648) | |||
BIC r4,r4,r3 ; | |||
STR r4,[r0] ; set propeller port P0.12 to GPIO without changing others. | |||
LDR r0,=PINSEL1 | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=3072 ; zero's for pins to be set for output (2^10+2^11 = 3072) | |||
BIC r4,r4,r3 ; | |||
STR r4,[r0] ; set propeller port P0.21 to GPIO without changing others. | |||
end_init_propeller LDMFD SP!,{PC,r0,r1,r2,r3,r4} | |||
; ----------------------------------------------------------------------------- | |||
; Procedure delay microsecond delay using timer 0 | |||
; (12Mhz clock & VPB divide by 4 assumed) | |||
; reg R0 must contain a delay value in uS | |||
; Not interruptable (r14 not saved) | |||
; assumes lcdReset has been called prior to delay | |||
; r0, r1 not preserved | |||
; ----------------------------------------------------------------------------- | |||
delay STMFD SP!,{LR,r0,r1} | |||
LDR r1,=T0_MR0_ADDR ; Match register zero | |||
STR r0,[r1] ; load match count per R0 | |||
; ldr r0,=0x8000 | |||
; str r0,[r5] ; turn on p0.15 led | |||
LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register | |||
MOV r0,#2 ; bit 1 = one | |||
STR r0,[r1] ; Clear counter & prescaler | |||
MOV r0,#0 | |||
STR r0,[r1] | |||
MOV r0,#1 ; bit 0 = one | |||
STR r0,[r1] ; Turn on counter | |||
dloop LDR r0,[r1] ; Read TCR register | |||
ANDS r0,r0,#1 | |||
BNE dloop | |||
; ldr r0,=0x8000 | |||
; str r0,[r6] ; turn off p0.15 led | |||
end_delay LDMFD SP!,{PC,r0,r1} ; Return | |||
END | |||
</nowiki> | |||
* Propeller Drive Using Interrupts (not polled) | |||
<nowiki> | |||
;--------------------------------------------------------------------------- | |||
; | |||
; Shell Programmer : Larry Aamodt, main: Rob Frohne | |||
; | |||
; | |||
; File name : shell_2148.s | |||
; Class : CPTR-215 | |||
; Language : ARM assembly | |||
; Assembler : Keil | |||
; Target MCU : NXP LPC-2148 on Embedded Artists board | |||
; Date Written: 11/30/09 | |||
; change history: 11/30/09 LDA Updated with hardware start-up | |||
; 12/03/09 LDA PWM register definitions added | |||
; Description : | |||
; | |||
; Inputs : | |||
; | |||
; Outputs : | |||
; | |||
; Special : | |||
; requirements | |||
; | |||
; | |||
; NOTES: | |||
; | |||
; | |||
; | |||
;--------------------------------------------------------------------------- | |||
; Put application program definitions (i.e. equates) here: | |||
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs | |||
Mode_USR EQU 0x10 | |||
Mode_FIQ EQU 0x11 | |||
Mode_IRQ EQU 0x12 | |||
Mode_SVC EQU 0x13 | |||
Mode_ABT EQU 0x17 | |||
Mode_UND EQU 0x1B | |||
Mode_SYS EQU 0x1F | |||
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled | |||
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled | |||
; Memory addresses for standard GPIO definitions | |||
IO0PIN EQU 0xE0028000 | |||
IO0SET EQU 0xE0028004 | |||
IO0DIR EQU 0xE0028008 | |||
IO0CLR EQU 0xE002800C | |||
; Vector Interrupt Controller Addresses | |||
VICIntSelect EQU 0xFFFFF00C | |||
VICVectAddr4 EQU 0xFFFFF110 | |||
VICVectCntl4 EQU 0xFFFFF210 | |||
VICIntEnable EQU 0xFFFFF010 | |||
VICVectAddr EQU 0xFFFFF030 | |||
; Timer addresses | |||
T0PC EQU 0xE0004010 ; Timer 0 Prescale counter | |||
T0IR EQU 0xE0004000 ; Timer 0 Interrupt Register | |||
T0_TCR_ADDR EQU 0xE0004004 | |||
T0_PR_ADDR EQU 0xE000400C | |||
T0_MCR_ADDR EQU 0xE0004014 | |||
T0_MR0_ADDR EQU 0xE0004018 | |||
; Memory addresses for Pulse Width Modulation (PWM) | |||
PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register | |||
PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register | |||
PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register | |||
PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) | |||
PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) | |||
PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) | |||
PWM_PCR EQU 0xE001404C ; PWM_CR Control Register | |||
PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register | |||
PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 | |||
PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 | |||
; Stack size definitions | |||
UND_Stack_Size EQU 0x00000000 | |||
SVC_Stack_Size EQU 0x00000008 | |||
ABT_Stack_Size EQU 0x00000000 | |||
FIQ_Stack_Size EQU 0x00000000 | |||
IRQ_Stack_Size EQU 0x00000080 | |||
USR_Stack_Size EQU 0x00000400 | |||
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ | |||
FIQ_Stack_Size + IRQ_Stack_Size) | |||
AREA STACK, NOINIT, READWRITE, ALIGN=3 | |||
Stack_Mem SPACE USR_Stack_Size | |||
__initial_sp SPACE ISR_Stack_Size | |||
Stack_Top | |||
; Area Definition and Entry Point | |||
; Startup Code must be linked first at Address at which it expects to run. | |||
AREA RESET, CODE, READONLY | |||
ARM | |||
; Exception Vectors | |||
; Mapped to Address 0. | |||
; Absolute addressing mode must be used. | |||
; Dummy Handlers are implemented as infinite loops which can be modified. | |||
Vectors LDR PC, Reset_Addr | |||
LDR PC, Undef_Addr | |||
LDR PC, SWI_Addr | |||
LDR PC, PAbt_Addr | |||
LDR PC, DAbt_Addr | |||
NOP ; Reserved Vector | |||
; LDR PC, IRQ_Addr | |||
LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr | |||
LDR PC, FIQ_Addr | |||
Reset_Addr DCD Reset_Handler | |||
Undef_Addr DCD Undef_Handler | |||
SWI_Addr DCD SWI_Handler | |||
PAbt_Addr DCD PAbt_Handler | |||
DAbt_Addr DCD DAbt_Handler | |||
DCD 0 ; Reserved Address | |||
IRQ_Addr DCD IRQ_Handler | |||
FIQ_Addr DCD FIQ_Handler | |||
; Exception Handlers | |||
Undef_Handler B Undef_Handler | |||
SWI_Handler B SWI_Handler | |||
PAbt_Handler B PAbt_Handler | |||
DAbt_Handler B DAbt_Handler | |||
IRQ_Handler B IRQ_Handler | |||
FIQ_Handler B FIQ_Handler | |||
; Reset Handler | |||
EXPORT Reset_Handler | |||
Reset_Handler | |||
; Setup Stack for each mode | |||
LDR R0, =Stack_Top | |||
; Enter Undefined Instruction Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #UND_Stack_Size | |||
; Enter Abort Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #ABT_Stack_Size | |||
; Enter FIQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #FIQ_Stack_Size | |||
; Enter IRQ Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #IRQ_Stack_Size | |||
; Enter Supervisor Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit | |||
MOV SP, R0 | |||
SUB R0, R0, #SVC_Stack_Size | |||
; Enter User Mode and set its Stack Pointer | |||
MSR CPSR_c, #Mode_USR | |||
MOV SP, R0 | |||
SUB SL, SP, #USR_Stack_Size | |||
step_time_uS EQU 250000 ; uS between steps of the propeller motor. | |||
main BL init_propeller ; Initialize GPIO and IRQ, and Timer 0. | |||
LDR r0,=step1 | |||
LDR r1,=NextRoutine_Address | |||
STR r0,[r1] | |||
bl delay ; start the whole automated thing | |||
do_nothing b do_nothing ; because the ISR will do it all! | |||
; ----------------------------------------------------------------------------- | |||
; Step the motor routines. These are called by the Timer0 ISR (timer0ISR) | |||
; ----------------------------------------------------------------------------- | |||
step1 STMFD SP!,{LR,r0-r12} | |||
mov r1, #1 ; for handy access | |||
mov r2, #0 ; for handy access | |||
mov r0, r1, LSL #12 ; turn one on | |||
mov r4, r2, LSL #21 ; two still off | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
LDR r0,=step2 | |||
LDR r1,=NextRoutine_Address | |||
STR r0,[r1] | |||
bl delay | |||
LDMFD SP!,{PC,r0-r12} | |||
step2 STMFD SP!,{LR,r0-r12} | |||
mov r1, #1 ; for handy access | |||
mov r2, #0 ; for handy access | |||
mov r0, r1, LSL #12 | |||
mov r4, r1, LSL #21 | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
LDR r0,=step3 | |||
LDR r1,=NextRoutine_Address | |||
STR r0,[r1] | |||
bl delay | |||
LDMFD SP!,{PC,r0-r12} | |||
step3 STMFD SP!,{LR,r0-r12} | |||
mov r1, #1 ; for handy access | |||
mov r2, #0 ; for handy access | |||
mov r0, r2, LSL #12 ; turn one off | |||
mov r4, r1, LSL #21 ; two still on | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
LDR r0,=step4 | |||
LDR r1,=NextRoutine_Address | |||
STR r0,[r1] | |||
bl delay | |||
LDMFD SP!,{PC,r0-r12} | |||
step4 STMFD SP!,{LR,r0-r12} | |||
mov r1, #1 ; for handy access | |||
mov r2, #0 ; for handy access | |||
mov r0, r2, LSL #12 ; turn one off | |||
mov r4, r2, LSL #21 ; turn two off | |||
orr r0, r4, r0 ; both on | |||
ldr r3,=IO0PIN | |||
str r0,[r3] | |||
LDR r0,=step1 | |||
LDR r1,=NextRoutine_Address | |||
STR r0,[r1] | |||
bl delay | |||
LDMFD SP!,{PC,r0-r12} | |||
; ----------------------------------------------------------------------------- | |||
; Procedure init_propeller Must be called before to initialize the propeller. | |||
; Set up GPIO P0.12 and P0.21 for output. | |||
; Set up timer 0 and interrupts for IRQ (low priority) | |||
; No parameters required | |||
; ----------------------------------------------------------------------------- | |||
init_propeller STMFD SP!,{LR,r0,r1,r2,r3,r4} | |||
LDR r1,=T0_PR_ADDR ; Prescale register | |||
MOV r2,#2 ; prescale count value | |||
STR r2,[r1] ; Prescaler will divide by 3 (1 uS period | |||
; T0MCR = 0x00000003; //reset counter and generate IRQ on MR0 match | |||
LDR r1,=T0_MCR_ADDR ; Match control register | |||
MOV r2,#0x3 ; bit 2 = one: Stop on MR0: the TC and PC : bit 1 = 1 gives interrupt | |||
; will be stopped and TCR[0] will be set to 0 if | |||
; MR0 matches the TC | |||
STR r2,[r1] ; stop counter when match reached | |||
; VICIntSelect &= ~0x10; //Timer0 interrupt is assigned to IRQ (not FIQ) | |||
LDR r1,=VICIntSelect | |||
MOV r0,#~0x10 | |||
STR r0,[r1] | |||
; VICVectAddr4 = (tU32)timer0ISR; //register ISR address | |||
LDR r1,=VICVectAddr4 | |||
LDR r0,=timer0ISR | |||
STR r0,[r1] | |||
; VICVectCntl4 = 0x24; //enable vector interrupt for timer0 | |||
LDR r1,=VICVectCntl4 | |||
MOV r0,#0x24 | |||
STR r0,[r1] | |||
; VICIntEnable = 0x10; //enable timer0 interrupt | |||
LDR r1,=VICIntEnable | |||
MOV r0,#0x10 | |||
STR r0,[r1] | |||
LDR r0,=IO0DIR | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=2101248 ; one's for pins to be set for output (2^12+2^21 = 2101248) | |||
; 2134016 = 2^12+2^21+2^15 (for debugging LED on P0.15 | |||
ORR r4,r4,r3 | |||
STR r4,[r0] ; set propeller port bits to output without changing others | |||
LDR r0,=PINSEL0 | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=50331648 ; zero's for pins to be set for output (2^24+2^25 = 50331648) | |||
BIC r4,r4,r3 ; | |||
STR r4,[r0] ; set propeller port P0.12 to GPIO without changing others. | |||
LDR r0,=PINSEL1 | |||
LDR r4,[r0] ; read current Port 0 direction bits | |||
LDR r3,=3072 ; zero's for pins to be set for output (2^10+2^11 = 3072) | |||
BIC r4,r4,r3 ; | |||
STR r4,[r0] ; set propeller port P0.21 to GPIO without changing others. | |||
end_init_propeller LDMFD SP!,{PC,r0,r1,r2,r3,r4} | |||
; ----------------------------------------------------------------------------- | |||
; Timer 0 Interrupt Service Routine timer0ISR | |||
; Some comments are C equivalents. | |||
; ----------------------------------------------------------------------------- | |||
timer0ISR SUB LR,LR,#4 ; Update the LR | |||
STMFD SP!, {r0-r12,LR} ; Store registers (including LR) | |||
; T0IR = 0xff; //reset all IRQ flags | |||
LDR r1,=T0IR | |||
MOV r0,#~0xff | |||
STR r0,[r1] | |||
; VICVectAddr = 0x00; //dummy write to VIC to signal end of interrupt | |||
LDR r1,=VICVectAddr | |||
MOV r0,#~0x00 | |||
STR r0,[r1] | |||
; Here we will branch to the appropriate next step routine. | |||
LDR r0,=NextRoutine_Address | |||
push {r14} ; save LR for this return. | |||
ldr r14,=end_timer0ISR ; load the LR because we are using an LDR PC below. | |||
ldr PC,[r0] ; branch to the subroutine pointed to by NextRoutine_Address | |||
end_timer0ISR pop {r14} ; restore the LR for this return. | |||
LDMFD SP!, {r0-r12,PC}^ ; Return from ISR | |||
; ----------------------------------------------------------------------------- | |||
; Procedure delay microsecond delay using timer 0 | |||
; (12Mhz clock & VPB divide by 4 assumed) | |||
; Delay is set by step_time_uS | |||
; ----------------------------------------------------------------------------- | |||
delay STMFD SP!,{LR,r0,r1} | |||
; T0PC = 0x00000000; Didn't do this yet. Unnecessary? //no prescale of clock | |||
; LDR r1,=T0PC | |||
; MOV r0,#0x00000000 | |||
; STR r0,[r1] | |||
; T0IR = 0x000000ff; //reset all flags before enable IRQs | |||
LDR r1,=T0IR | |||
MOV r0,#0x000000ff | |||
STR r0,[r1] | |||
; T0MR0 = delayInMs * //calculate no of timer ticks | |||
; ((CRYSTAL_FREQUENCY * PLL_FACTOR) / (1000 * VPBDIV_FACTOR)); | |||
LDR r1,=T0_MR0_ADDR ; Match register zero | |||
LDR r0,=step_time_uS | |||
STR r0,[r1] ; load match count from step_time_uS | |||
; T0TCR = 0x00000002; //disable and reset Timer0 | |||
LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register | |||
MOV r0,#2 ; bit 1 = one | |||
; T0TCR = 0x00000001; //start Timer0 | |||
STR r0,[r1] ; Clear counter & prescaler | |||
MOV r0,#0 | |||
STR r0,[r1] | |||
MOV r0,#1 ; bit 0 = one | |||
STR r0,[r1] ; Turn on counter | |||
end_delay LDMFD SP!,{PC,r0,r1} ; Return | |||
AREA Thedata, DATA, READWRITE | |||
ALIGN | |||
NextRoutine_Address SPACE 4 ; This holds the address of the next step subroutine. | |||
END | |||
</nowiki> | </nowiki> |
Latest revision as of 11:58, 7 November 2014
- Factorial
; Factorial Calculation ; The answer is in R10 ; Rob Frohne 2013 GLOBAL Reset_Handler AREA Factorial, CODE, READONLY ENTRY Reset_Handler movs r8, #0 ; Take the factorial of this number, n. mov r10, #1 ; 0! and 1! are 1 beq stop ; If r8 is zero we are done cmp r8, #1 ; If r8 is 1, beq stop ; we are done subs r9, r8, #1 ; n-1 loop mulne r10, r9, r8 ; n(n-1) mov r8, r10 subs r9, r9, #1 bne loop stop b stop END
- Factorial 2014
_ AREA Add, CODE ENTRY ; This program takes the factorial of n (in r2) n EQU 0 ldr r2,=n ; Load r2 with the number to take the factorial of. cmp r2,#0 ; Is n=0 bne check_for_1 mov r4,#1 b stop check_for_1 cmp r2,#1 bne initialize_r4 mov r4,#1 b stop initialize_r4 mov r4,r2 sub r3,r4,#1 loop mul r5,r4,r3 mov r4,r5 subs r3,r3,#1 bne loop stop b stop END
- 64 Bit Add
VAL1A EQU 0xffffffff VAL1B EQU 0x0000000f VAL2A EQU 0x00000001 VAL2B EQU 0x00000001 AREA LongAdd, CODE ENTRY ldr R0, = VAL1A ldr R1, = VAL1B ldr R2, = VAL2A ldr R3, = VAL2B adds R8,R0,R1 adcs R9,R1,R3 stop b stop END
- Copy to RAM
AREA Exaddress, CODE, READONLY EXPORT Reset_Handler Reset_Handler LDR R9, =list mov R7, #4 ; number in list ldr r6, =datastart loop ldr r8,[r9],#4 str r8,[r6],#4 subs r7,r7,#1 bne loop stop b stop ALIGN list DCW 0x1111, 0x2222, 0x3333, 0x4444, 0x5555 ALIGN string DCB "This is a test.",0 ; This string is not used in the copy to ram program string2 DCB 'T','h','i' ; This string2 is not used in the copy to ram program ALIGN AREA Thedata, DATA, NOINIT, READWRITE datastart SPACE 20 END
- Subroutine Example1
; First Subroutine Example ; This program demonstrates using a subroutine, ; saving registers on the stack, etc. ; Rob Frohne, 11/3/2013 stack_start EQU 0x40001000 AREA Subroutine_Example, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) mov r1, #1 ; Store some numebers in some registers mov r2, #2 mov r3, #3 bl subroutine stop b stop ; This subroutine saves the registers, ; messes up the registers locally, ; then restores the registers and returns. subroutine stmfd sp!, {r1-r2,lr} ; save used registers and the link register (r14) mov r1,#0xffffffff ; mess up the registers mov r2, r1 ldmfd sp!, {r1,r2,pc} ; pop the stack and return END
- Minimum of a Signed Number
; This program finds the minimum of a list of constant words in signed format ; The result is in r3 at the end of the routine. ; Rob Frohne 10/30/2013 AREA Program, CODE, READONLY ENTRY ldr r0,=end ; load the end address of the code & initialize it as the pointer. ldr r2,=begin ; load the beginning address of the code. mov r3,#0x7fffffff ; Initialize r3 as the most positive number. loop ldr r6,[r2],#4 ; load the next data into r6 and post increment r2 for the next data. cmp r6,r3 ; Find out if r6 > r3. result from r6-r3 like subs r7,r6,r3 without r6 necessary. bgt no_update ; If it is no update. mov r3,r6 ; update if r6 is lower than r3. no_update cmp r0,r2 ; are we at the end yet bne loop ; if r7 != 0 then keep looping stop b stop ALIGN begin DCD 0x8fffffff, 0x55555555, 0x44444444, 0x77777777, 0xffffffff end END
- Compare Two Null Terminated Strings
; Subroutine to compare two null terminated ASCII strings. ; The address where the two strings start are in r0 and r1 ; The return is in r0, 1 for match and 0 for don't match. ; If they don't match, r1 gives the number of the first ; character that didn't match, starting with 0. ; r2 and r3 are not protected. ; Rob Frohne 11/6/2013 stack_start EQU 0x40001000 AREA String_Compare, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) ldr r0, =string1 ldr r1, =string2 bl compare_strings stop b stop compare_strings stmfd sp!, {r2,r4,r5,lr} ; save used registers and the link register (r14) mov r2, #0 ; Initialize the counter for the first position. loop ldrb r4,[r0],#1 ldrb r5,[r1],#1 cmp r5,r4 bne do_not_match cmp r4, #0 ; check for end of string. beq match add r2, #1 b loop do_not_match mov r0, #0 ; don't match b finish match mov r0, #1 finish mov r1,r2 ; Move the count into the result register. ldmfd sp!, {r2,r4,r5,pc} ; pop the stack and return string1 DCB "This is the first string.",00 ; For testing purposes. ALIGN string2 DCB "This is the first string.",00 ALIGN END
- BCD Add
; Subroutine to add two BCD numbers in 32 bit form with each nibble ; representing a digit. ; locals: r8 for digit counter, single digit mask 0xf, r5 & r6 for masked addends, ; working BCD_carry, r7 ; working result in r4 ; the summed digits go in r3 ; inputs: r0+r1 ; outputs: r0 result and r1 carry ; only r4-r8 are saved. ; Rob Frohne 11/12/13 stack_start EQU 0x40001000 AREA ADD_BCD, CODE ENTRY Start ldr sp, =stack_start ; Tell where we will place the stack. ; (It goes down (lower addresses from here.) ldr r0, =0x12345678 ; The two numbers to add. ldr r1, =0x87654321 bl bcd_add stop b stop bcd_add ; The subroutine stmfd sp!, {r4-r8,lr} mov r8, #8 ; Set the counter to move through the eight digits mov r7, #0 ; Set the carry to zero to start with mov r3, #0 ; This is where the resulting digits of the sum are stored. loop and r5, r0, #0xf ; mask for the rightmost digit. and r6, r1, #0xf add r4, r5, r7 ; add carry add r4, r4, r6 ; r4=r5+r6 subs r4, r4, #10 ; Subtract 10 (base 10) to see if there is a carry. bpl carry mov r7, #0 ; set carry to zero add r4, r4, #10 ; Add the 10 back in as there was no carry needed. b roll_to_next_digit carry mov r7, #1 ; set the carry roll_to_next_digit orr r3, r3, r4 ; Add these digits into the sum. ror r0, #4 ror r1, #4 ror r3, #4 subs r8, r8, #1 ; Decrement the digit counter bne loop ; If it isn't zero do the next digit. mov r0, r3 ; Set the output registers. r0 is result. r1 is carry. mov r1, r7 ldmfd sp!, {r4-r8,pc} END
- Bubble Sort
; This is a program to bubble sort a list. ; Rob Frohne and the CPTR 215 class stack_start EQU 0x40001000 length EQU (end_of_list - begin) end_ram EQU (datastart + length) ; EQU statements must be at the beginning of the program. AREA Subroutine_Example, CODE ENTRY ; Copy list to RAM ldr sp, =stack_start LDR R9, =begin ldr R7, =end_of_list ldr r6, =datastart loop ldr r8,[r9],#4 str r8,[r6],#4 cmp r9,r7 bne loop ; End copy to RAM start_sort ldr r5,=(end_ram - 4) loop_sort_outer ; r2 is our counter, it goes from 1 to item_count mov r1, #1 ; has_changed = false (0 is true) ldr r2,=datastart ; start of data in ram goes into r2 loop_sort_inner ; ldr r3,[r2],#4 ldr r4,[r2],#0 cmp r3,r4 blhi subroutine_swap ; swaps the last two and sets has_changed cmp r2,r5 bne loop_sort_inner sub r5,r5,#4 ; the last item is in order, so we don't need to check it again. cmp r1,#1 bne loop_sort_outer stop b stop subroutine_swap ; swaps the contents of the addresses held in ; r2 and r2 -4 (the previous address) ; has_changed is r1 and it sets it to 0 (true) stmfd sp!, {r0,r2-r4,lr} mov r1,#0 ; setting the has_changed to true. ldr r0,[r2],#-4 ; swapping data ldr r3,[r2] str r0,[r2],#4 str r3,[r2] ldmfd sp!, {r0,r2-r4,pc} ALIGN begin DCD 0x8fffffff, 0x55555555, 0x44444444, 0x77777777, 0xffffffff end_of_list AREA Thedata, DATA, NOINIT, READWRITE datastart SPACE 20 END
- GPIO Example
;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here main ldr r1, =PINSEL0 mov r0, #0 ; set P0.0 to P0.15 as GPIO str r0,[r1] ldr r1, =IO0DIR ; Get ready to set direction of data ldr r0, =0xffff ; output str r0, [r1] ; set the direction ldr r1, =IO0PIN ; load the address of the port0 mov r0, #0 next str r0, [r1] add r0, r0, #1 ldr r2, =0x200 delay subs r2,r2,#1 bne delay b next AREA Thedata, DATA, READWRITE ALIGN datastart EQU 0x40000004 SPACE 20 ;FILL 20, 0xff ; Why is this stored at 0x50 instead of 0x58? ; Or maybe a better question: How do I set data at ; a specific memory location? END
- LCD Example
;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here main bl lcdReset ; set up the lcd bl lcdClear mov r0, #32 loop bl lcdWRdata ; write to the LCD add r0, r0, #1 ; increment the data mov r9, r0 ldr r0, =1000000 bl delay mov r0, r9 b loop ; User data area definition follows AREA appdata, DATA, NOINIT, READWRITE ;----------------------------------------------------------------------------- ; Copyright (C) 2012 .... ; ; Programmer : Larry Aamodt ; ; File name : lcd_routines.asm ; Language : ARM assembly ; Assembler ; Keil ; Target MCU : NXP LPC2148 on Embedded Artists education board ; Date : 12/05/12 LDA lcd_routines.asm. debugged ; ; Description : LCD display routines ; Copy this code to your own program ; ; Procedures you can call are: ; lcdReset must be called first. no parameters. ; lcdClear use to clear the display & home the cursor ; no parameters are required. ; lcdWRdata use to write one character on the display ; place an ASCII char in r0 before calling. ; The cursor will advance. ; lcdCursorAt use to move the cursor. Two parameters ; r0 = row (1 or 2) ; r1 = column to move cursor to (0-15) ; ; Example use of the LCD routines: ; bl lcdReset ; do this once at the top of your program ; ; mov r0,#31h ; place the ascii code for number one in r0 ; bl lcdWRdata ; display the character '1' on LCD display ; ; bl lcdClear ; clear the display ; ; mov r0,#1 ; select LCD row 1 ; mov r1,#4 ; select LCD column 4 ; bl lcdCursorAt ; move the cursor ; ; ; NOTE: All registers are saved by these routines, i.e. upon return ; from the subroutine all registers, except flags, have the ; same value in them as before the subroutine was called (this ; breaks with the ARM convention for subroutines but is done ; to make it easier for you). ; ;----------------------------------------------------------------------------- AREA lcdroutines,CODE,READONLY EXPORT lcdReset EXPORT lcdClear EXPORT lcdWRdata EXPORT lcdCursorAt EXPORT delay ; ----------------------------------------------------------------------------- ; LCD Procedures follow. ;------------------------------------------------------------------------------ ; ***** LCD equates ****** ;IO0PIN EQU 0xE0028000 ;IO0SET EQU 0xE0028004 ;IO0DIR EQU 0xE0028008 ;IO0CLR EQU 0xE002800C IO1PIN EQU 0xE0028010 IO1SET EQU 0xE0028014 IO1DIR EQU 0xE0028018 IO1CLR EQU 0xE002801C T0_TCR_ADDR EQU 0xE0004004 T0_PR_ADDR EQU 0xE000400C T0_MCR_ADDR EQU 0xE0004014 T0_MR0_ADDR EQU 0xE0004018 ; ----------------------------------------------------------------------------- ; Procedure lcdReset Must be called before writing to the LCD ; No parameters required ; ----------------------------------------------------------------------------- lcdReset STMFD SP!,{LR,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} LDR r1,=T0_PR_ADDR ; Prescale register MOV r2,#2 ; prescale count value STR r2,[r1] ; Prescaler will divide by 3 LDR r1,=T0_MCR_ADDR ; Match control register MOV r2,#0x6 ; bit 2 = one STR r2,[r1] ; stop counter when match reached LDR r5,=IO0CLR LDR r6,=IO0SET LDR r7,=IO1CLR LDR r8,=IO1SET LDR r0,=35000 BL delay ; delay 35ms LDR r0,=IO0DIR LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=0x40408000 ; one's for pins to be set for output ORR r4,r4,r3 ; bits 22 & 30 to be outputs STR r4,[r0] ; set lcd port bits to output LDR r3,=0x00400000 ; STR r3,[r5] ; write 0 to LCD R/W signal LDR r3,=0x40008000 STR r3,[r6] ; turn on backlight - write 1 to P0.30 LDR r0,=IO1DIR LDR r4,[r0] ; read current Port 1 direction bits LDR r3,=0x03FF0000 ; one's for lcd pins - set for output ORR r4,r4,r3 ; bits 16 to 25 to be outputs STR r4,[r0] ; set lcd port direction bits to output STR r3,[r7] ; clear the LCD data & control bits LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r2,=0x00380000 ; function: 2 lines, 5x7 dots STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay ; wait 40 microseconds LDR r2,=0x000E0000 ; function: display on, cursor on STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay ; wait 40 microseconds LDR r2,=0x00010000 ; lcd function: clear display STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#1600 BL delay ; delay for 1600 microseconds LDR r2,=0x00030000 ; lcd function: set entry mode STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits end_lcdReset LDMFD SP!,{PC,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9} ;------------------------------------------------------------------------------ ; Procedure pulse_e uses r0. Not interuptable (r14 not saved) ; assumes r9 has 0x02000000 in it ; assumes r7 has IO1CLR address in it ; assumes r8 has IO1SET address in it ;------------------------------------------------------------------------------ pulse_e MOV r0,#4 STR r9,[r8] ; assert E ploop1 SUBS r0,r0,#1 ; delay 600ns or so BNE ploop1 STR r9,[r7] ; de-assert E MOV r0,#8 ploop2 SUBS r0,r0,#1 ; delay 1100ns or so BNE ploop2 end_pulse_e BX LR ; ----------------------------------------------------------------------------- ; Procedure lcdClear Clears the LCD and positions cursor to line1, left col ; no parameters required ; ----------------------------------------------------------------------------- lcdClear STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET LDR r2,=0x00010000 ; lcd function: clear display STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#1600 BL delay end_lcdClear LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure lcdCursorAt ; r0 assumed to contain the row# (1 or 2) ; r1 assumed to contain col#(0-15) ; No cursor movement if invalid row or col # is found ; ----------------------------------------------------------------------------- lcdCursorAt STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} CMP r1,#15 ; check column & row range BHI end_lcdCursorAt CMP r0,#0 BEQ end_lcdCursorAt CMP r0,#2 BHI end_lcdCursorAt ADDEQ r1,r1,#0x40 ; build the cursor address LDR r0,=0x00800000 ORR r2,r0,r1,LSL #16 ; r2 now has the address LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET LDR r9,=0x02000000 ; bit pattern to turn on/off E STR r2,[r8] ; set lcd function bits BL pulse_e STR r3,[r7] ; clear lcd bits MOV r0,#40 BL delay end_lcdCursorAt LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure lcdWRdata Writes data (an ASCII character) to the ; current cursor position on the LCD ; r0 is assumed to contain the character to send ; ----------------------------------------------------------------------------- lcdWRdata STMFD SP!,{LR,r0,r1,r2,r3,r7,r8,r9} LDR r9,=0x02000000 ; bit pattern to turn on/off E LDR r3,=0x03FF0000 ; one's for pins used for lcd LDR r7,=IO1CLR LDR r8,=IO1SET AND r0,r0,#0xFF ; make sure only 8 bits are non-zero ORR r0,r0,#0x100 ; set bit that indicates writing LSL r0,r0,#16 STR r0,[r8] ; write data BL pulse_e STR r3,[r7] ; clear lcd bits end_lcdWRData LDMFD SP!,{PC,r0,r1,r2,r3,r7,r8,r9} ; ----------------------------------------------------------------------------- ; Procedure delay microsecond delay using timer 0 ; (12Mhz clock & VPB divide by 4 assumed) ; reg R0 must contain a delay value in uS ; Not interruptable (r14 not saved) ; assumes lcdReset has been called prior to delay ; r0, r1 not preserved ; ----------------------------------------------------------------------------- delay LDR r1,=T0_MR0_ADDR ; Match register zero STR r0,[r1] ; load match count per R0 ; ldr r0,=0x8000 ; str r0,[r5] ; turn on p0.15 led LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register MOV r0,#2 ; bit 1 = one STR r0,[r1] ; Clear counter & prescaler MOV r0,#0 STR r0,[r1] MOV r0,#1 ; bit 0 = one STR r0,[r1] ; Turn on counter dloop LDR r0,[r1] ; Read TCR register ANDS r0,r0,#1 BNE dloop ; ldr r0,=0x8000 ; str r0,[r6] ; turn off p0.15 led end_delay BX LR ; Return END
- PWM Example for running the servos on the robots
;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Memory addresses for Timer/Counter T1TCR EQU 0xE0008004 T1CTCR EQU 0xE0008070 T1PR EQU 0xE000800C T1MCR EQU 0xE0008014 T1EMR EQU 0xE000803C ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here main BL pwm_init mov r0, #3 ldr r1, =1600 mov r2, r1 bl pwm_update stop b stop ;***************************************************************************** ; Pulse width modulator initialization routine. ; pulse period = 20ms; initial pulse length = 1.5ms ; (values shown are for controlling model plane servos) ; Inputs: none ; Returned values: none ; Uses registers r0, r1 ; ; Calling method: BL pwm_init ; LDA rev 1.0 12/01/10 ; Rob Frohne rev 1.1 12/3/13 ;***************************************************************************** ; Stepper motor connections on the Board of Education are from page 24 of the board ; Users Guide. A stepper motor operation is explained at: ; http://www.haydonkerk.com/Resources/StepperMotorTheory/tabid/192/Default.aspx ; ; PWM is explained in Chapter 16 (page 253 and following) of the reference manual. ; Note the registers in the reference manual are labeled without the _, i.e. ; PWMPR instead of PWM_PR. pwm_init STMFD sp!,{r14} ; save link register on the stack LDR r0,=PWM_PR LDR r1,=2 ; prescaler = 2 divides PCLK by 3 STR r1,[r0] ; load prescaler ; PCLK rate is 1 MHZ (1 uSEC period) after division. LDR r0,=PWM_MCR ; PWMMCR PWM Match Control Register. ; The PWMMCR is used to control if an ; interrupt is generated and if the PWMTC ; is reset when a Match occurs. See page 261 of the manual. LDR r1,=0x02 ; bit 1 is set, others are zero STR r1,[r0] ; load PWM_MCR: PWM_TC resets when PWM_TC=PWM_MR0 LDR r0,=PWM_MR0 LDR r1,=20000 ; count 20,000 1uSEC intervals = 20 milli secs STR r1,[r0] ; load match register 0. sets pulse period. Page 261. LDR r0,=PWM_MR4 LDR r1,=1500 ; initial pulse width = 1.5 milli secs STR r1,[r0] ; load match register 4. Page 261 LDR r0,=PWM_MR6 LDR r1,=1500 ; initial pulse width STR r1,[r0] ; load match register 6 LDR r0,=PWM_LER LDR r1,=0x51 STR r1,[r0] ; Enable latch registers 0, 4, & 6 LDR r0,=PWM_PCR LDR r1,=0x5000 ; bits 12 & 14 set STR r1,[r0] ; load PWM_CR: enables PWM4 and PWM6 outputs LDR r0,=PWM_TCR LDR r1,=0x09 ; bits 3,1,0 set STR r1,[r0] ; load PWM_TCR enable PWM counter & prescaler LDR r0,=PINSEL0 LDR r1,=0xA0000 ; bits 19 & 17 set. selects output PWM 6 & 4 STR r1,[r0] ; Enable PWM6 & PWM4 outputs end_pwm_init LDMFD sp!,{pc} ; Return from subroutine pwm_init ;***************************************************************************** ; Pulse width modulator update routine ; Inputs: r0 = command ; 1 = update PWM channel 4 ; 2 = update PWM channel 6 ; 3 = update both channel 4 and 6 ; r1 = new pulse width (# of microseconds) for PWM channel 4 ; r2 = new pulse width (# of microseconds) for PWM channel 6 ; Returned values: none ; Uses registers r0, r1, r2, r3 ; ; Calling method: first put values in r0, r1, r2 as appropriate ; BL pwm_update ; LDA rev 2.0 12/01/11 ;***************************************************************************** pwm_update STMFD sp!,{r14} ; r0 specifies channels to update load_pwm4 CMP r0,#1 ; 1 = load PWM chan 4 BNE load_pwm6 LDR r3,=PWM_MR4 STR r1,[r3] ; load match register 4 load_pwm6 CMP r0,#2 ; 2 = load PWM chan 6 BNE load_both LDR r3,=PWM_MR6 STR r2,[r3] ; load match register 6 load_both CMP r0,#3 BNE pwm_reg_update LDR r3,=PWM_MR4 STR r1,[r3] LDR r3,=PWM_MR6 STR r2,[r3] pwm_reg_update CMP r0,#1 ; check for just pwm 4 update MOVEQ r1,#0x10 CMP r0,#2 ; check for just pwm 6 update MOVEQ r1,#0x40 CMP r0,#3 ; check for pwm 4 & 6 update MOVEQ r1,#0x50 LDR r3,=PWM_LER STR r1,[r3] ; enable latch registers end_pwm_update LDMFD sp!,{pc} ; Return from subroutine pwm_update ; User data area definition follows AREA appdata, DATA, NOINIT, READWRITE END
- Stepper Motor on the Embedded Artists Board of Education
;--------------------------------------------------------------------------- ; ; Programmer : Larry Aamodt ; : Modifications for propeller drive: Rob Frohne ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Timer addresses T0_TCR_ADDR EQU 0xE0004004 T0_PR_ADDR EQU 0xE000400C T0_MCR_ADDR EQU 0xE0004014 T0_MR0_ADDR EQU 0xE0004018 ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size ; User program code goes here quarter_period EQU 250000 ; uS main BL init_propeller mov r1, #1 ; for handy access mov r2, #0 ; for handy access mov r0, r1, LSL #12 ; turn one on mov r4, r2, LSL #21 ; two still off orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] ldr r0,=quarter_period bl delay mov r0, r1, LSL #12 mov r4, r1, LSL #21 orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] ldr r0,=quarter_period bl delay mov r0, r2, LSL #12 ; turn one off mov r4, r1, LSL #21 ; two still on orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] ldr r0,=quarter_period bl delay mov r0, r2, LSL #12 ; turn one off mov r4, r2, LSL #21 ; turn two off orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] ldr r0,=quarter_period bl delay b main ; ----------------------------------------------------------------------------- ; Procedure init_propeller Must be called before to initialize the propeller. ; Set up the counter T0 and GPIO P0.12 and P0.21 for output. ; No parameters required ; ----------------------------------------------------------------------------- init_propeller STMFD SP!,{LR,r0,r1,r2,r3,r4} LDR r1,=T0_PR_ADDR ; Prescale register MOV r2,#2 ; prescale count value STR r2,[r1] ; Prescaler will divide by 3 (1 uS period) LDR r1,=T0_MCR_ADDR ; Match control register MOV r2,#0x4 ; bit 2 = one: Stop on MR0: the TC and PC ; will be stopped and TCR[0] will be set to 0 if ; MR0 matches the TC STR r2,[r1] ; stop counter when match reached LDR r0,=IO0DIR LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=2101248 ; one's for pins to be set for output (2^12+2^21 = 2101248) ; 2134016 = 2^12+2^21+2^15 (for debugging LED on P0.15 ORR r4,r4,r3 STR r4,[r0] ; set propeller port bits to output without changing others. LDR r0,=PINSEL0 LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=50331648 ; zero's for pins to be set for output (2^24+2^25 = 50331648) BIC r4,r4,r3 ; STR r4,[r0] ; set propeller port P0.12 to GPIO without changing others. LDR r0,=PINSEL1 LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=3072 ; zero's for pins to be set for output (2^10+2^11 = 3072) BIC r4,r4,r3 ; STR r4,[r0] ; set propeller port P0.21 to GPIO without changing others. end_init_propeller LDMFD SP!,{PC,r0,r1,r2,r3,r4} ; ----------------------------------------------------------------------------- ; Procedure delay microsecond delay using timer 0 ; (12Mhz clock & VPB divide by 4 assumed) ; reg R0 must contain a delay value in uS ; Not interruptable (r14 not saved) ; assumes lcdReset has been called prior to delay ; r0, r1 not preserved ; ----------------------------------------------------------------------------- delay STMFD SP!,{LR,r0,r1} LDR r1,=T0_MR0_ADDR ; Match register zero STR r0,[r1] ; load match count per R0 ; ldr r0,=0x8000 ; str r0,[r5] ; turn on p0.15 led LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register MOV r0,#2 ; bit 1 = one STR r0,[r1] ; Clear counter & prescaler MOV r0,#0 STR r0,[r1] MOV r0,#1 ; bit 0 = one STR r0,[r1] ; Turn on counter dloop LDR r0,[r1] ; Read TCR register ANDS r0,r0,#1 BNE dloop ; ldr r0,=0x8000 ; str r0,[r6] ; turn off p0.15 led end_delay LDMFD SP!,{PC,r0,r1} ; Return END
- Propeller Drive Using Interrupts (not polled)
;--------------------------------------------------------------------------- ; ; Shell Programmer : Larry Aamodt, main: Rob Frohne ; ; ; File name : shell_2148.s ; Class : CPTR-215 ; Language : ARM assembly ; Assembler : Keil ; Target MCU : NXP LPC-2148 on Embedded Artists board ; Date Written: 11/30/09 ; change history: 11/30/09 LDA Updated with hardware start-up ; 12/03/09 LDA PWM register definitions added ; Description : ; ; Inputs : ; ; Outputs : ; ; Special : ; requirements ; ; ; NOTES: ; ; ; ;--------------------------------------------------------------------------- ; Put application program definitions (i.e. equates) here: ; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs Mode_USR EQU 0x10 Mode_FIQ EQU 0x11 Mode_IRQ EQU 0x12 Mode_SVC EQU 0x13 Mode_ABT EQU 0x17 Mode_UND EQU 0x1B Mode_SYS EQU 0x1F I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled ; Memory addresses for standard GPIO definitions IO0PIN EQU 0xE0028000 IO0SET EQU 0xE0028004 IO0DIR EQU 0xE0028008 IO0CLR EQU 0xE002800C ; Vector Interrupt Controller Addresses VICIntSelect EQU 0xFFFFF00C VICVectAddr4 EQU 0xFFFFF110 VICVectCntl4 EQU 0xFFFFF210 VICIntEnable EQU 0xFFFFF010 VICVectAddr EQU 0xFFFFF030 ; Timer addresses T0PC EQU 0xE0004010 ; Timer 0 Prescale counter T0IR EQU 0xE0004000 ; Timer 0 Interrupt Register T0_TCR_ADDR EQU 0xE0004004 T0_PR_ADDR EQU 0xE000400C T0_MCR_ADDR EQU 0xE0004014 T0_MR0_ADDR EQU 0xE0004018 ; Memory addresses for Pulse Width Modulation (PWM) PWM_TCR EQU 0xE0014004 ; PWM_TCR Timer Control Register PWM_PR EQU 0xE001400C ; PWM_PR Prescaler Register PWM_MCR EQU 0xE0014014 ; PWM_MCR Match Control Register PWM_MR0 EQU 0xE0014018 ; PWM_MR0 Match Register 0 (sets pulse period) PWM_MR4 EQU 0xE0014040 ; PWM_MR4 Match Register 4 (sets pulse length) PWM_MR6 EQU 0xE0014048 ; PWM_MR6 Match Register 6 (sets pulse length) PWM_PCR EQU 0xE001404C ; PWM_CR Control Register PWM_LER EQU 0xE0014050 ; PWM_LER Latch Enable Register PINSEL0 EQU 0xE002C000 ; Pin connect block - port 0 PINSEL1 EQU 0xE002C004 ; Pin connect block - port 1 ; Stack size definitions UND_Stack_Size EQU 0x00000000 SVC_Stack_Size EQU 0x00000008 ABT_Stack_Size EQU 0x00000000 FIQ_Stack_Size EQU 0x00000000 IRQ_Stack_Size EQU 0x00000080 USR_Stack_Size EQU 0x00000400 ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \ FIQ_Stack_Size + IRQ_Stack_Size) AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE USR_Stack_Size __initial_sp SPACE ISR_Stack_Size Stack_Top ; Area Definition and Entry Point ; Startup Code must be linked first at Address at which it expects to run. AREA RESET, CODE, READONLY ARM ; Exception Vectors ; Mapped to Address 0. ; Absolute addressing mode must be used. ; Dummy Handlers are implemented as infinite loops which can be modified. Vectors LDR PC, Reset_Addr LDR PC, Undef_Addr LDR PC, SWI_Addr LDR PC, PAbt_Addr LDR PC, DAbt_Addr NOP ; Reserved Vector ; LDR PC, IRQ_Addr LDR PC, [PC, #-0x0FF0] ; Vector from VicVectAddr LDR PC, FIQ_Addr Reset_Addr DCD Reset_Handler Undef_Addr DCD Undef_Handler SWI_Addr DCD SWI_Handler PAbt_Addr DCD PAbt_Handler DAbt_Addr DCD DAbt_Handler DCD 0 ; Reserved Address IRQ_Addr DCD IRQ_Handler FIQ_Addr DCD FIQ_Handler ; Exception Handlers Undef_Handler B Undef_Handler SWI_Handler B SWI_Handler PAbt_Handler B PAbt_Handler DAbt_Handler B DAbt_Handler IRQ_Handler B IRQ_Handler FIQ_Handler B FIQ_Handler ; Reset Handler EXPORT Reset_Handler Reset_Handler ; Setup Stack for each mode LDR R0, =Stack_Top ; Enter Undefined Instruction Mode and set its Stack Pointer MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #UND_Stack_Size ; Enter Abort Mode and set its Stack Pointer MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #ABT_Stack_Size ; Enter FIQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #FIQ_Stack_Size ; Enter IRQ Mode and set its Stack Pointer MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #IRQ_Stack_Size ; Enter Supervisor Mode and set its Stack Pointer MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit MOV SP, R0 SUB R0, R0, #SVC_Stack_Size ; Enter User Mode and set its Stack Pointer MSR CPSR_c, #Mode_USR MOV SP, R0 SUB SL, SP, #USR_Stack_Size step_time_uS EQU 250000 ; uS between steps of the propeller motor. main BL init_propeller ; Initialize GPIO and IRQ, and Timer 0. LDR r0,=step1 LDR r1,=NextRoutine_Address STR r0,[r1] bl delay ; start the whole automated thing do_nothing b do_nothing ; because the ISR will do it all! ; ----------------------------------------------------------------------------- ; Step the motor routines. These are called by the Timer0 ISR (timer0ISR) ; ----------------------------------------------------------------------------- step1 STMFD SP!,{LR,r0-r12} mov r1, #1 ; for handy access mov r2, #0 ; for handy access mov r0, r1, LSL #12 ; turn one on mov r4, r2, LSL #21 ; two still off orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] LDR r0,=step2 LDR r1,=NextRoutine_Address STR r0,[r1] bl delay LDMFD SP!,{PC,r0-r12} step2 STMFD SP!,{LR,r0-r12} mov r1, #1 ; for handy access mov r2, #0 ; for handy access mov r0, r1, LSL #12 mov r4, r1, LSL #21 orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] LDR r0,=step3 LDR r1,=NextRoutine_Address STR r0,[r1] bl delay LDMFD SP!,{PC,r0-r12} step3 STMFD SP!,{LR,r0-r12} mov r1, #1 ; for handy access mov r2, #0 ; for handy access mov r0, r2, LSL #12 ; turn one off mov r4, r1, LSL #21 ; two still on orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] LDR r0,=step4 LDR r1,=NextRoutine_Address STR r0,[r1] bl delay LDMFD SP!,{PC,r0-r12} step4 STMFD SP!,{LR,r0-r12} mov r1, #1 ; for handy access mov r2, #0 ; for handy access mov r0, r2, LSL #12 ; turn one off mov r4, r2, LSL #21 ; turn two off orr r0, r4, r0 ; both on ldr r3,=IO0PIN str r0,[r3] LDR r0,=step1 LDR r1,=NextRoutine_Address STR r0,[r1] bl delay LDMFD SP!,{PC,r0-r12} ; ----------------------------------------------------------------------------- ; Procedure init_propeller Must be called before to initialize the propeller. ; Set up GPIO P0.12 and P0.21 for output. ; Set up timer 0 and interrupts for IRQ (low priority) ; No parameters required ; ----------------------------------------------------------------------------- init_propeller STMFD SP!,{LR,r0,r1,r2,r3,r4} LDR r1,=T0_PR_ADDR ; Prescale register MOV r2,#2 ; prescale count value STR r2,[r1] ; Prescaler will divide by 3 (1 uS period ; T0MCR = 0x00000003; //reset counter and generate IRQ on MR0 match LDR r1,=T0_MCR_ADDR ; Match control register MOV r2,#0x3 ; bit 2 = one: Stop on MR0: the TC and PC : bit 1 = 1 gives interrupt ; will be stopped and TCR[0] will be set to 0 if ; MR0 matches the TC STR r2,[r1] ; stop counter when match reached ; VICIntSelect &= ~0x10; //Timer0 interrupt is assigned to IRQ (not FIQ) LDR r1,=VICIntSelect MOV r0,#~0x10 STR r0,[r1] ; VICVectAddr4 = (tU32)timer0ISR; //register ISR address LDR r1,=VICVectAddr4 LDR r0,=timer0ISR STR r0,[r1] ; VICVectCntl4 = 0x24; //enable vector interrupt for timer0 LDR r1,=VICVectCntl4 MOV r0,#0x24 STR r0,[r1] ; VICIntEnable = 0x10; //enable timer0 interrupt LDR r1,=VICIntEnable MOV r0,#0x10 STR r0,[r1] LDR r0,=IO0DIR LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=2101248 ; one's for pins to be set for output (2^12+2^21 = 2101248) ; 2134016 = 2^12+2^21+2^15 (for debugging LED on P0.15 ORR r4,r4,r3 STR r4,[r0] ; set propeller port bits to output without changing others LDR r0,=PINSEL0 LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=50331648 ; zero's for pins to be set for output (2^24+2^25 = 50331648) BIC r4,r4,r3 ; STR r4,[r0] ; set propeller port P0.12 to GPIO without changing others. LDR r0,=PINSEL1 LDR r4,[r0] ; read current Port 0 direction bits LDR r3,=3072 ; zero's for pins to be set for output (2^10+2^11 = 3072) BIC r4,r4,r3 ; STR r4,[r0] ; set propeller port P0.21 to GPIO without changing others. end_init_propeller LDMFD SP!,{PC,r0,r1,r2,r3,r4} ; ----------------------------------------------------------------------------- ; Timer 0 Interrupt Service Routine timer0ISR ; Some comments are C equivalents. ; ----------------------------------------------------------------------------- timer0ISR SUB LR,LR,#4 ; Update the LR STMFD SP!, {r0-r12,LR} ; Store registers (including LR) ; T0IR = 0xff; //reset all IRQ flags LDR r1,=T0IR MOV r0,#~0xff STR r0,[r1] ; VICVectAddr = 0x00; //dummy write to VIC to signal end of interrupt LDR r1,=VICVectAddr MOV r0,#~0x00 STR r0,[r1] ; Here we will branch to the appropriate next step routine. LDR r0,=NextRoutine_Address push {r14} ; save LR for this return. ldr r14,=end_timer0ISR ; load the LR because we are using an LDR PC below. ldr PC,[r0] ; branch to the subroutine pointed to by NextRoutine_Address end_timer0ISR pop {r14} ; restore the LR for this return. LDMFD SP!, {r0-r12,PC}^ ; Return from ISR ; ----------------------------------------------------------------------------- ; Procedure delay microsecond delay using timer 0 ; (12Mhz clock & VPB divide by 4 assumed) ; Delay is set by step_time_uS ; ----------------------------------------------------------------------------- delay STMFD SP!,{LR,r0,r1} ; T0PC = 0x00000000; Didn't do this yet. Unnecessary? //no prescale of clock ; LDR r1,=T0PC ; MOV r0,#0x00000000 ; STR r0,[r1] ; T0IR = 0x000000ff; //reset all flags before enable IRQs LDR r1,=T0IR MOV r0,#0x000000ff STR r0,[r1] ; T0MR0 = delayInMs * //calculate no of timer ticks ; ((CRYSTAL_FREQUENCY * PLL_FACTOR) / (1000 * VPBDIV_FACTOR)); LDR r1,=T0_MR0_ADDR ; Match register zero LDR r0,=step_time_uS STR r0,[r1] ; load match count from step_time_uS ; T0TCR = 0x00000002; //disable and reset Timer0 LDR r1,=T0_TCR_ADDR ; Timer 0 Control Register MOV r0,#2 ; bit 1 = one ; T0TCR = 0x00000001; //start Timer0 STR r0,[r1] ; Clear counter & prescaler MOV r0,#0 STR r0,[r1] MOV r0,#1 ; bit 0 = one STR r0,[r1] ; Turn on counter end_delay LDMFD SP!,{PC,r0,r1} ; Return AREA Thedata, DATA, READWRITE ALIGN NextRoutine_Address SPACE 4 ; This holds the address of the next step subroutine. END