Feedback and Control Systems: Difference between revisions
Jump to navigation
Jump to search
(→Links) |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Inverted Pendulum Project == |
|||
#[[Parameters]] |
|||
#[http://www.ee.usyd.edu.au/tutorials_online/matlab/examples/pend/invpen.html Modeling the Inverted Pendulum] |
|||
#[http://engr.case.edu/merat_francis/eecs397/PLL.pdf Phase Locked Loops] |
|||
== |
== Octave Examples == |
||
[[RLC Circuit of February 10, 2011]] |
|||
% Double Pendulum Parameters (Tentative: There are two pendulums with different parameters. I'm not sure which these go to.) |
|||
== Links == |
|||
% Run parameters |
|||
*[https://ia700708.us.archive.org/33/items/NetworkAnalysisFeedbackAmplifierDesign/Bode-NetworkAnalysisFeedbackAmplifierDesign.pdf H. W. Bode's "Network Analysis and Feedback Amplifier Design"] |
|||
%f = input('Control Frequency (Hz) = '); |
|||
*[http://www.cds.caltech.edu/~murray/books/AM05/pdf/am08-complete_30Aug11.pdf Feedback Systems (textbook) Astrom & Murray] |
|||
%crad = input('Pole Radius (1/s) = '); |
|||
*[http://www.eolss.net/sample-chapters/c18/e6-43-13-09.pdf Bernard Friedland, Reduced Order Observer] |
|||
%psi = input('Spreading Angle (deg) = '); |
|||
*[http://www.cds.caltech.edu/~murray/books/AM05/pdf/obc-kalman_22Dec09.pdf Optimization Based Control (Murray)] |
|||
%eta = psi*pi/180; |
|||
%obshift = input('Observer Shift = '); |
|||
%Trun = input('Run Time (s) = '); |
|||
f=130; |
|||
crad=19; |
|||
psi=10; |
|||
eta=psi*pi/180; |
|||
obshift=2; |
|||
Trun=60; |
|||
kmax = round(f*Trun); |
|||
T = 1/f; |
|||
Maxpos = 0.25; % Max carriage travel +- 0.25 m |
|||
Maxangle = 0.175; % Max rod angle -- 10 deg |
|||
Maxvoltage = 20; % Max motor voltage, V |
|||
pstart = 0.005; % Carriage position starting limit, m |
|||
astart = 1*pi/180; % Angle starting limit, rad |
|||
g = 9.81; % m/s^2 Gravitational constant |
|||
% SYSTEM PARAMETERS |
|||
% Measured Mechanical Parameters |
|||
d1 = 0.323; % m Length of pendulum 1 (long) |
|||
d2 = 0.079; % m Length of pendulum 2 (short) |
|||
%mp1 = 0.0208; % kg Mass of pendulum 1 |
|||
mp1 = 0.0318; |
|||
%mp2 = 0.0050; % kg Mass of pendulum 2 |
|||
mp2 = 0.0085; |
|||
m = 0.3163; % kg Mass of carriage |
|||
rd = 0.0254/2; % m Drive pulley radius |
|||
md = 0.0375; % kg Mass of drive pulley (cylinder) |
|||
%mc1 = 0.0036; % kg Mass of clamp 1* |
|||
%mc2 = 0.0036; % kg Mass of clamp 2* |
|||
mc1 = 0.0085; |
|||
mc2 = mc1; |
|||
% *Clamp Dimensions |
|||
% Rectangular 0.0254 x 0.01143 m |
|||
% The pivot shaft is 0.00714 m from the end |
|||
% Motor Parameters (Data Sheet) |
|||
Im = 43e-7; % kg m^2/rad Rotor moment of inertia |
|||
R = 4.09; % ohms Resistance |
|||
kt = 0.0351; % Nm/A Torque constant |
|||
ke = 0.0351; % Vs/rad Back emf constant |
|||
% Derived Mechanical Parameters |
|||
% kg m^2/rad Moment of inertia, clamp 1 |
|||
%Ic1 = mc1*(0.01143^2 + 0.0254^2)/12 + mc1*(0.0127-0.00714)^2; |
|||
Ic1 = mc1*(0.0098^2 + 0.0379^2)/12; |
|||
Ic2 = Ic1; % kg m^2/rad Moment of inertia, clamp 2 |
|||
Id = md*(rd^2)/2; % kg m^2/rad Moment of inertia, drive pulley |
|||
Imd = Im + Id; % kg m^2/rad Moment of inertia, combined |
|||
J1 = Ic1 + mp1*(d1^2)/3; % Total moment of inertia, pendulum 1 (long) |
|||
J2 = Ic2 + mp2*(d2^2)/3; % Total moment of inertia, pendulum 2 (short) |
|||
Jd = Im + Id; % Total moment of inertia, motor drive |
|||
Mc = m + mc1 + mc2; % Total carriage mass |
|||
% Friction Test Data |
|||
% Carriage Slope = 19 deg; Terminal Velocity xdotss = 0.312 m/s; From |
|||
% twincarriage.m; formula b = m g sin(theta)/xdotss |
|||
% Pendulum 1 (long) Exponent a1 = 0.0756 1/s; From longfit.m |
|||
% Pendulum 2 (short) Exponent a2 = 0.2922 1/s; From shortfit.m |
|||
% formula b = 2 a J |
|||
%alpha = 19; |
|||
alpha = 12.2; |
|||
%xdotss = 0.312; |
|||
xdotss = 0.4852; |
|||
%a1 = 0.0756; |
|||
%a2 = 0.2922; |
|||
a1 = 0.0185; |
|||
a2 = 0.012; |
|||
% Ns/m Viscous friction of carriage system |
|||
b = (Mc + mp1 + mp2)*g*sin(alpha*pi/180)/xdotss; |
|||
b1 = 2*a1*J1; % Nms/rad Viscous friction of pendulum 1 (rotational) |
|||
b2 = 2*a2*J2; % Nms/rad Viscous friction of pendulum 2 (rotational) |
|||
scale = [rd*2*pi/4096 2*pi/4096 -0.05/250]; |
|||
T = 1/f; |