|
|
(9 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| | == Inverted Pendulum Project == |
| | #[[Parameters]] |
| | #[http://www.ee.usyd.edu.au/tutorials_online/matlab/examples/pend/invpen.html Modeling the Inverted Pendulum] |
| | #[http://engr.case.edu/merat_francis/eecs397/PLL.pdf Phase Locked Loops] |
|
| |
|
| == Inverted Penululm Project == | | == Octave Examples == |
| [Parameters] | | [[RLC Circuit of February 10, 2011]] |
| % Double Pendulum Parameters (Tentative: There are two pendulums with different parameters. I'm not sure which these go to.)
| | |
|
| | == Links == |
| % Run parameters
| | *[https://ia700708.us.archive.org/33/items/NetworkAnalysisFeedbackAmplifierDesign/Bode-NetworkAnalysisFeedbackAmplifierDesign.pdf H. W. Bode's "Network Analysis and Feedback Amplifier Design"] |
| %f = input('Control Frequency (Hz) = ');
| | *[http://www.cds.caltech.edu/~murray/books/AM05/pdf/am08-complete_30Aug11.pdf Feedback Systems (textbook) Astrom & Murray] |
| %crad = input('Pole Radius (1/s) = ');
| | *[http://www.eolss.net/sample-chapters/c18/e6-43-13-09.pdf Bernard Friedland, Reduced Order Observer] |
| %psi = input('Spreading Angle (deg) = ');
| | *[http://www.cds.caltech.edu/~murray/books/AM05/pdf/obc-kalman_22Dec09.pdf Optimization Based Control (Murray)] |
| %eta = psi*pi/180;
| |
| %obshift = input('Observer Shift = ');
| |
| %Trun = input('Run Time (s) = ');
| |
| f=130;
| |
| crad=19;
| |
| psi=10;
| |
| eta=psi*pi/180;
| |
| obshift=2;
| |
| Trun=60;
| |
|
| |
| kmax = round(f*Trun);
| |
| T = 1/f;
| |
| Maxpos = 0.25; % Max carriage travel +- 0.25 m
| |
| Maxangle = 0.175; % Max rod angle -- 10 deg
| |
| Maxvoltage = 20; % Max motor voltage, V
| |
| pstart = 0.005; % Carriage position starting limit, m
| |
| astart = 1*pi/180; % Angle starting limit, rad
| |
|
| |
| g = 9.81; % m/s^2 Gravitational constant
| |
|
| |
| % SYSTEM PARAMETERS
| |
| % Measured Mechanical Parameters
| |
| d1 = 0.323; % m Length of pendulum 1 (long)
| |
| d2 = 0.079; % m Length of pendulum 2 (short)
| |
| %mp1 = 0.0208; % kg Mass of pendulum 1
| |
| mp1 = 0.0318;
| |
| %mp2 = 0.0050; % kg Mass of pendulum 2
| |
| mp2 = 0.0085;
| |
| m = 0.3163; % kg Mass of carriage
| |
| rd = 0.0254/2; % m Drive pulley radius
| |
| md = 0.0375; % kg Mass of drive pulley (cylinder)
| |
| %mc1 = 0.0036; % kg Mass of clamp 1*
| |
| %mc2 = 0.0036; % kg Mass of clamp 2*
| |
| mc1 = 0.0085;
| |
| mc2 = mc1;
| |
|
| |
| % *Clamp Dimensions
| |
| % Rectangular 0.0254 x 0.01143 m
| |
| % The pivot shaft is 0.00714 m from the end
| |
|
| |
| % Motor Parameters (Data Sheet)
| |
| Im = 43e-7; % kg m^2/rad Rotor moment of inertia
| |
| R = 4.09; % ohms Resistance
| |
| kt = 0.0351; % Nm/A Torque constant
| |
| ke = 0.0351; % Vs/rad Back emf constant
| |
|
| |
| % Derived Mechanical Parameters
| |
|
| |
| % kg m^2/rad Moment of inertia, clamp 1
| |
| %Ic1 = mc1*(0.01143^2 + 0.0254^2)/12 + mc1*(0.0127-0.00714)^2;
| |
| Ic1 = mc1*(0.0098^2 + 0.0379^2)/12;
| |
| Ic2 = Ic1; % kg m^2/rad Moment of inertia, clamp 2
| |
| Id = md*(rd^2)/2; % kg m^2/rad Moment of inertia, drive pulley
| |
| Imd = Im + Id; % kg m^2/rad Moment of inertia, combined
| |
|
| |
| J1 = Ic1 + mp1*(d1^2)/3; % Total moment of inertia, pendulum 1 (long)
| |
| J2 = Ic2 + mp2*(d2^2)/3; % Total moment of inertia, pendulum 2 (short)
| |
| Jd = Im + Id; % Total moment of inertia, motor drive
| |
| Mc = m + mc1 + mc2; % Total carriage mass
| |
|
| |
| % Friction Test Data
| |
| % Carriage Slope = 19 deg; Terminal Velocity xdotss = 0.312 m/s; From
| |
| % twincarriage.m; formula b = m g sin(theta)/xdotss
| |
| % Pendulum 1 (long) Exponent a1 = 0.0756 1/s; From longfit.m
| |
| % Pendulum 2 (short) Exponent a2 = 0.2922 1/s; From shortfit.m
| |
| % formula b = 2 a J
| |
|
| |
| %alpha = 19;
| |
| alpha = 12.2;
| |
| %xdotss = 0.312;
| |
| xdotss = 0.4852;
| |
| %a1 = 0.0756;
| |
| %a2 = 0.2922;
| |
| a1 = 0.0185;
| |
| a2 = 0.012;
| |
| % Ns/m Viscous friction of carriage system
| |
| b = (Mc + mp1 + mp2)*g*sin(alpha*pi/180)/xdotss;
| |
| b1 = 2*a1*J1; % Nms/rad Viscous friction of pendulum 1 (rotational)
| |
| b2 = 2*a2*J2; % Nms/rad Viscous friction of pendulum 2 (rotational)
| |
|
| |
| scale = [rd*2*pi/4096 2*pi/4096 -0.05/250];
| |
|
| |
|
| |
| T = 1/f;
| |