Fourier series: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 12: Line 12:
----
----
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions.
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions.

----

Revision as of 20:38, 27 October 2004

Diriclet Conditions


The conditions for a periodic function with period 2L to have a convergent Fourier series.

Theorem:

Let be a piecewise regular real-valued function defined on some interval [-L,L], such that has only a finite number of discontinuities and extrema in [-L,L]. Then the Fourier series of this function converges to when is continuous and to the arithmetic mean of the left-handed and right-handed limit of at a point where it is discontinuous.

The Fourier Series


A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions.