Fourier series: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 12: | Line 12: | ||
---- |
---- |
||
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions. |
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions. |
||
---- |
Revision as of 20:38, 27 October 2004
Diriclet Conditions
The conditions for a periodic function with period 2L to have a convergent Fourier series.
Theorem:
Let be a piecewise regular real-valued function defined on some interval [-L,L], such that has only a finite number of discontinuities and extrema in [-L,L]. Then the Fourier series of this function converges to when is continuous and to the arithmetic mean of the left-handed and right-handed limit of at a point where it is discontinuous.
The Fourier Series
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of the sine and cosine functions.