Fourier transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Guenan (talk | contribs)
No edit summary
Guenan (talk | contribs)
No edit summary
Line 2: Line 2:
<math>
<math>


x(t)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt


</math>
</math>
Line 10: Line 10:
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math>
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math>
<br><br>
<br><br>
Now let's make a periodic function <math> \gamma(t) </math> by repeating <math> \beta(t) </math> with a fundamental period <math> T_\zeta </math>.
Now let's make a periodic function
Note that <math> \lim_{T_\zeta \to \infty}\gamma(t)=\beta(t) </math>
<math>
\gamma(t)
</math>
by repeating
<math>
\beta(t)
</math>
with a fundamental period
<math>
T_\zeta
</math>.
Note that  
<math>
\lim_{T_\zeta \to \infty}\gamma(t)=\beta(t)
</math>
<br>
<br>
The Fourier Series representation of <math> \gamma(t) </math> is
The Fourier Series representation of <math> \gamma(t) </math> is
<br>
<br>
<math> \gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt} </math> where <math> f={1\over T_\zeta}
<math>
</math> <br>and <math> \alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt</math>
\gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt}
</math>
where
<math>  
f={1\over T_\zeta}
</math>
<br>and
<math>
\alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt
</math>
<br>
<br>
<math> \alpha_k </math> can now be rewritten as <math> \alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt </math>
<math> \alpha_k </math> can now be rewritten as
<math>
\alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt
</math>
<br>From our initial identity then, we can write <math> \alpha_k </math> as
<br>From our initial identity then, we can write <math> \alpha_k </math> as
<math>
<math>
\alpha_k={1\over T_\zeta}\Beta(kf)
\alpha_k={1\over T_\zeta}\Beta(kf)
</math>
</math>
<br> and  
<br> and  
<math>
<math>
\gamma(t)
\gamma(t)
</math>
</math>
becomes
becomes
<math>
<math>
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt}
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt}
</math>
<br>
Now remember that
<math>
\beta(t)=\lim_{T_\zeta \to \infty}\gamma(t)
</math>
and
<math>
{1\over {T_\zeta}} = f.
</math>
<br>
Which means that
<math>
\beta(t)=\lim_{f \to 0}\gamma(t)=\lim_{f \to 0}\sum_{k=-\infty}^\infty f \Beta(kf) e^{j2\pi fkt}
</math>
<br>
Which is just to say that
<math>
\beta(t)=\int_{-\infty}^\infty f \Beta(f) e^{j2\pi fkt}\,df
</math>
<br>
<br>
So we have that the Fourier Transform of
<math>
\beta(t)
</math>
is
<math>
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt
</math>
</math>

Revision as of 11:21, 9 December 2004

An initially identity that is useful: X(f)=x(t)ej2πftdt

Suppose that we have some function, say β(t), that is nonperiodic and finite in duration.
This means that β(t)=0 for some Tα<|t|

Now let's make a periodic function γ(t) by repeating β(t) with a fundamental period Tζ. Note that limTζγ(t)=β(t)
The Fourier Series representation of γ(t) is
γ(t)=k=αkej2πfkt where f=1Tζ
and αk=1TζTζ2Tζ2γ(t)ej2πktdt
αk can now be rewritten as αk=1Tζβ(t)ej2πktdt
From our initial identity then, we can write αk as αk=1TζB(kf)
and γ(t) becomes γ(t)=k=1TζB(kf)ej2πfkt
Now remember that β(t)=limTζγ(t) and 1Tζ=f.
Which means that β(t)=limf0γ(t)=limf0k=fB(kf)ej2πfkt
Which is just to say that β(t)=fB(f)ej2πfktdf

So we have that the Fourier Transform of β(t) is X(f)=x(t)ej2πftdt