Signals and systems/GF Fourier: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:


==Determining the coefficient <math> \alpha_n \,</math> ==
==Determining the coefficient <math> \alpha_n \,</math> ==

<math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math> The definition of the Fourier series

<math> \int_{-T/2}^{T/2} x(t)\, dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T} dt</math>


== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation ==
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation ==

Revision as of 20:42, 29 October 2006

Fourier series

The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.

A function is considered periodic if for .

The exponential form of the Fourier series is defined as

Determining the coefficient

The definition of the Fourier series

Notation

Linear Time Invariant Systems

Changing Basis Functions

Identities