Signals and systems/GF Fourier: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 42: Line 42:


<math>\cos x = \frac{e^{jx}+e^{-jx}}{2} \,</math>
<math>\cos x = \frac{e^{jx}+e^{-jx}}{2} \,</math>

<math> \left \langle n \mid m \right \rangle = T \delta_{n,m} \,</math>

Revision as of 21:48, 29 October 2006

Fourier series

The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.

A function is considered periodic if for .

The exponential form of the Fourier series is defined as

Determining the coefficient

  • The definition of the Fourier series

  • Integrating both sides for one period. The range of integration is arbitrary, but using scales nicely when extending the Fourier series to a non-periodic function

  • Multiply by the complex conjugate

    • Using L'Hopitals to evaluate the case. Note that n & m are integers

Notation

Linear Time Invariant Systems

Changing Basis Functions

Identities