The Fourier Transforms: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 21: Line 21:


* if x(t) is real, then<math> X(-f) = F(t)^*</math>
* if x(t) is real, then<math> X(-f) = F(t)^*</math>

* if x(t) is imaginary, then <math>X(-f) = -X(f)^*</math>
* if x(t) is imaginary, then <math>X(-f) = -X(f)^*</math>

* if x(t) is even, then <math>X(-f) = X(f)$</math>
* if x(t) is even, then <math>X(-f) = X(f)$</math>

* if x(t) is odd, then<math> X(-f) = -X(f)$.</math>
* if x(t) is odd, then<math> X(-f) = -X(f)$.</math>

Revision as of 10:03, 12 October 2007

The Fourier transform was named after Joseph Fourier, a French mathematician. A Fourier Transform takes a function to its frequency components.


Properties of a Fourier Transform:

Properties of a Fourier Transform:

Linearity

   


= Shifting the function changes the phase of the spectrum

   

Frequency and amplitude are affected when changing spatial scale inversely

   

Symmetries =

   * if x(t) is real, then
   * if x(t) is imaginary, then 
   * if x(t) is even, then 
   * if x(t) is odd, then