Vector weighting functions: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
===Orthogonal but not Orthonormal Basis Sets===
===Orthogonal but not orthonormal basis sets===


Suppose we have two vectors from an orthonormal system, <math> \vec \bold u </math> and <math> \vec \bold v </math>. Taking the inner product of these vectors, we get
Suppose we have two vectors from an orthonormal system, <math> \vec \bold u </math> and <math> \vec \bold v </math>. Taking the inner product of these vectors, we get
Line 12: Line 12:


<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m \vec \bold a_k \bullet \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m w_k\delta_{k,m} = \sum_{k=1}^3 w_k v_k u_k </math>.
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m \vec \bold a_k \bullet \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m w_k\delta_{k,m} = \sum_{k=1}^3 w_k v_k u_k </math>.

You can interpret the <math>w_k</math> as a weighting factor between the different directions so that different directions all end up in the units you would like. For example, suppose that the x and y directions were measured in meters, and the z direction was measured in centimeters, and you would like to use meters as your base unit. You could either convert the z dimensions to meters (probably simpler) or use a weighting function <math> w_x = 1</math>, <math>w_y = 1</math> and <math> w_z = 10^{-6} </math>. In this sense, the system could be considered orthonormal with these units and this weighting arrangement.

[[Orthogonal Functions|This idea is often extended to functions.]]

[[Orthogonal functions]]

Principle author of this page: [[User:Frohro|Rob Frohne]]

Latest revision as of 16:36, 26 September 2004

Orthogonal but not orthonormal basis sets

Suppose we have two vectors from an orthonormal system, and . Taking the inner product of these vectors, we get

What if they aren't from a normalized system, so that

where the is the square of the length of and the symbol is one when k = n and zero otherwise? Well the general inner product of and becomes

.

You can interpret the as a weighting factor between the different directions so that different directions all end up in the units you would like. For example, suppose that the x and y directions were measured in meters, and the z direction was measured in centimeters, and you would like to use meters as your base unit. You could either convert the z dimensions to meters (probably simpler) or use a weighting function , and . In this sense, the system could be considered orthonormal with these units and this weighting arrangement.

This idea is often extended to functions.

Orthogonal functions

Principle author of this page: Rob Frohne